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Notations for T2
θ

I Smooth NC torus:

C∞(T2
θ) = (C∞(T2),×θ) =

¶∑
an,mUnVm

©
where

I UU∗ = 1, VV∗ = 1 and UV = e2πiθVU.
I an,m is of rapidly decay in (n, m) ∈ Z2.
I U 7→ eix, V 7→ eiy.

I Canonical trace ϕ0 : C∞(T2
θ)→ C:

ϕ0
Ä∑

an,mUnVm
ä
= a0,0.

I H0 is the Hilbert space completion of C∞(T2
θ) with respect to the

inner product:
〈a, b〉 = ϕ0(b∗a).

I C∞(T2
θ) ⊂ B(H0) via left multiplication.



Notations for T2
θ

I T2 action: r = (r1, r2) ∈ R2/Z2,

αr(UnVm) = e2πi(r1n+r2m)UnVm

I Basic derivations: δ1 and δ2, play the role of −i∂x and −i∂y
respectively:

δ1(U) = U, δ1(V) = 0, δ2(U) = 0, δ2(V) = V.

I Let τ ∈ C with <τ > 0 be the modular parameter of complex
structures on T2. The analog complex structures on T2

θ is given
by the ∂̄-operator:

∂̄ = δ1 + τ̄δ2, ∂̄∗ = δ1 + τδ2,

and the flat Dolbeault Laplacian for τ =
√
−1:

∆ = δ2
1 + δ2

2 .



Conformal change of metric g′ = ehg

I Weyl factor: k = eh, where h = h∗ ∈ C∞(T2
θ).

I Rescaled volume functional:

ϕ(a) = ϕ0(ae−h), ∀a ∈ C∞(T2
θ)

I ϕ is no longer a trace. It is a weight with the KMS property:

ϕ(ab) = ϕ(b /4(a)), ∀a, b ∈ C∞(T2
θ),

where /4 is called the modular operator, its logarithm is denoted
by /5 = log /4:

/4(a) = k−1ak, /5(a) = [a, h].



Conformal change of metric g′ = ehg

I New metric g′ is implemented by the Dolbeault Laplacian with
respect to ϕ:

∆ϕ = ∂̄∗ϕ∂̄ = k1/2∆k1/2,

∆k = k∆ = k1/2∆ϕk−1/2.

I Local invariants for (C∞(Tm
θ ), ∆k) are recorded in the small time

(t→ 0) heat asymptotic:

Tr(ae−t∆k) v
∞∑

j=0

Vj(a, ∆k)t
(j−m)/2, ∀a ∈ C∞(Tm

θ ).

I Each Vj is a linear functional in a and is determined by its
functional density vj ∈ C∞(Tm

θ ):

Vj(a, ∆k) = ϕ0(avj), ∀a ∈ C∞(Tm
θ ).



Spectral Geometry for Riemannian manifolds
Let (M, g) be a closed Riemannian manifold and ∆ be the scalar
Laplacian operator.

I All the odd coefficients vanish since the manifold has no
boundary.

I In general, the even heat coefficients involve complicated
combinations of the components of the curvature tensor and all
its derivatives.

I Upto a universal constant, the first one equals the volume
functional, that is, v0 = 1:

V0(a, ∆) =
ˆ

M
adµg, ∀a ∈ C∞(M).

I The second one recovers the scalar curvature function:
v2 = Sg/6:

V2(a, ∆) =
ˆ

M
a(Sg/6)dµg, ∀a ∈ C∞(M).



Modular Scalar Curvature

Definition
We define the scalar curvature R∆k ∈ C∞(Tm

θ ) to be the functional
density of the second heat coefficient:

V2(a, ∆k) = ϕ0
(
aR∆k

)
, ∀a ∈ C∞(Tm

θ ).

The full expression of R∆k has been computed in various settings:
Connes-Moscovici, Khalkhali-Fathizadeh, Moscovici-Lesch, Liu.



Modular Scalar Curvature

Theorem (Full local expression of R∆k)

Recall k = eh is the Weyl factor, /4(a) = k−1ak and /5(a) = [a, h].

R∆k = k−m/2K( /4)(∇2k) · g−1 + k−m/2−1H( /4(1), /4(2))(∇k∇k) · g−1

= e(−m/2+1)h
Ä

K̃( /5)(∇2h) · g−1 + H̃( /5(1), /5(2))(∇h∇h) · g−1
ä

I g−1 is the metric tensor on the cotangent bundle so that

−(∇2k) · g−1 = ∆k =
m∑
1

δ2
j (k)

(∇h∇h) · g−1 = 〈dh, dh〉g−1 =
m∑
1

[δj(k)]2.



I In Connes-Moscovici’s paper, the one variable function is a
generating function of Bernoulli numbers:

K̃(u) = 8
∞∑
1

B2n

(2n)!
u2n−2.

I Connes-Moscovici relation:

H̃(u, v) =
K̃(v)− K̃(u)

v + u
+

K̃(v + u)− K̃(v)
u

− K̃(v + u)− K̃(u)
v

.

I Prominent role of divided difference (Lesch): since K̃ is a even
function, the first term in the RHS above is indeed a divided
difference:

H̃(u, v) = −[u + v, u]K̃ + [u + v, v]K̃ + [−u, v]K̃,

where

[u, v]K ,
K(u)− K(v)

u− v
.



Pseudo differential calculus

I The heat operator can be defined using holomorphic functional
calculus:

e−t∆k =
1

2πi

ˆ
C

e−λ(∆− λ)−1dλ,

where the contour C is chosen to be the imaginary axis, from
−∞i to i∞.

I σ(∆k) = p2 + p1 + p0, p2 = k |ξ|2 and p1 = p0 = 0.
I Pseudo differential calculus provides a recursive algorithm to

construct an approximation of the resolvent symbol:

σ
Ä
(∆k − λ)−1

ä
v b0 + b1 + b2 + . . . ,

starting with the resolvent of the leading symbol:

b0 = (p2 − λ)−1 = (k |ξ|2 − λ)−1.



Rearrangement Lemma

I The trace can be recovered by integrating the symbol over the
cotangent bundle, in particular,

R∆k =

ˆ
Rm

1
2πi

ˆ
C

e−λb2(ξ, λ)dλdξ

= (∗)
ˆ ∞

0

1
2πi

ˆ
C

e−λb2(r, λ)dλ(rm−1dr).

I bj is a finite sum of terms of the form:

ba0
0 ρ1ba0

0 · · · ρnban
0 , (ba0

0 ⊗ · · · ⊗ ban
0 ) · (ρ1 · · · ρn)

= (k(0)r2 − λ)−a0 · · · (k(n)r2 − λ)−an · (ρ1 · · · ρn),

where ρj’s are the derivatives of the symbols of ∆k. For the
b2-term, ρj is either ∇k or ∇2k.



Rearrangement Lemma

I For the b2 term:

b2 =
∑ Ä

ba
0(∇2k)bb

0 + bã
0(∇k)bb̃

0(∇k)bc̃
0

ä
· g−1.

I

ˆ ∞

0

1
2πi

ˆ
C

e−λba
0(∇2k)bb

0dλ(rm−1dr)

=

ˆ ∞

0

1
2πi

ˆ
C

e−λ(k(0)r2 − λ)−a(k(1)r2 − λ)bdλ(rm−1dr) · (∇2k)

= k−m/2Ka,b( /4; m)(∇2k)

I Ha,b,c( /4(1), /4(2); m)(∇k∇k) is defined in a similar fashion.
I We have used the substitution:

k(1) = k(0) /4(1), k(2) = k(0) /4(1) /4(2).



It follows that the modular curvature is of the form:∑
kjKa,b( /4; m)(∇2k) · g−1

+
∑

kj−1Hã,b̃,c̃( /4(1), /4(2); m)(∇k∇k) · g−1,

where j = −m/2, m is the dimension.



Hypergeometric Functions

Proposition (Liu, 17)

Let dm = a + b + m/2− 2,

Ka,b(y; m) =
Γ(dm)

Γ(a + b) 2F1(dm, b; a + b; 1− y)

where

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0
(1− t)c−b−1tb−1(1− zt)−adt.

Similarly, set dm = a + b + c + m/2− 2,

Ha,b,c(u, v; m) =
Γ(dm)

Γ(a + b + c)
F1(dm; c, b; a + b + c; 1− uv, 1− u).



Differential and Contiguous Relations

I Examples for the one-variable family:

Ka,b(u; m + 2) = (dm + ud/du)Ka,b(u; m),

Ka,b+1(u; m) = (b−1d/du)Ka,b(u; m),

Ka,b+1(u; m) = (1 + b−1ud/du)Ka+1,b(u; m)

and

Ka,b(u; m + 2) = aKa+1,b(u; m) + bKa,b+1(u; m).

Similar relations holds for Ha,b,c(u, v; m).
I We also have some reduction formulas for double integrals via

divided difference:

F1(a; 1, 1; b; x, y) = [x, y](z 2F1(a, 1; b; z))



Geometric functionals

I Conformal change of metric g 7→ g′ = ehg has the modular
analogue: ∆ 7→ ∆k = k∆ with k = eh and h = h∗ ∈ C∞(Tm

θ ).
I Einstein-Hilbert Functional:

FEH(h) = FEH(k) = V2(1, ∆k) = ϕ0(R∆k).

I When m = 2: OPS (Osgood-Phillips-Sarnak) functional, a scaling
invariant version of the Ray-Singer determinant functional:

FLogDet′(k) = −LogDet′(∆k) + log ϕ0(k) = ζ ′∆k
(0) + log ϕ0(k).

I Facts, in demission two:

FEH(k) = ζ∆k(0) + 1,

FLogDet′(k) = ζ ′∆(0)−
ˆ 1

0
V2(h, ∆ks)ds,

where ks , ks for s ∈ R.



Spectral zeta functions
For a ∈ C∞(Tm

θ ),

ζ∆k(z; a) = Tr(a∆−z
k (1− Pk)),

when <z is sufficiently large and Pk is the orthonormal projection to
the kernel of ∆k, with a meromorphic continuation via the Mellin’s
transform and heat asymptotic:

ζ∆k(z; a) =
1

Γ(z)

ˆ ∞

0
tz−1 Tr(ae−t∆k(1− Pk))dt.

Proposition (Gauss-Bonnet Thm for T2
θ)

The EH-action FEH(k) is a constant functional in k, in other words,

ζ∆k(0) = ζ∆(0).

Connes-Tretkoff, Khalkhali-Fathizadeh.



Modular Curvature as Functional Gradients

Let a = a∗ ∈ C∞(Tm
θ ), we consider variation along a in the following

way:

hε = h + aε, kε = eh+aε, δa ,
d
dε

∣∣∣
ε=0

Definition
Let F be a functional in h or k = eh, the functional gradient
gradk F ∈ C∞(Tm

θ ) is the uniquely determined by the property:

δaF(k) = ϕ0(δa(k) gradk F), ∀a ∈ C∞(Tm
θ ).

Similarly, we define gradh F via:

δaF(h) = ϕ0(h gradh F), ∀a ∈ C∞(Tm
θ ).



Modular Curvature as Functional Gradients
By studying the variation of the heat operator, we obtain that for
m ≥ 2

δaFEH(k) =
2−m

2
V2(δa(k)k−1, ∆k),

therefore: (compare to the variation of the scalar curvature)

gradk FEH = 2−m
2 k−1R∆k .

When m = 2, (for closed surfaces, the result is knows as Polyakov’s
conformal anomaly):

δaFLogDet′(k) = −V2(δa(k)k−1, ∆k),

thus

gradk FLogDet′ = −k−1R∆k .



It suggests that gradk F is of the form:

kjK( /4)(∇2k) · g−1 + kj−1H( /4(1), /4(2))(∇k · ∇k) · g−1,

and

K = K∆k , H = H∆k

by comparing the spectral functions.



Computing gradk F via its local formula

I Upto a constant, both FEH(k) and FLogDet′(k) are of the form:

F(k) = ϕ0
Ä

kjT( /4)(∇k)∇k
ä
· g−1, j ∈ R.

Proposition

Let m be the dimension parameter,

FEH(k) = ϕ0
Ä

k−m/2−1T∆k( /4)(∇k)∇k
ä
· g−1,

with

T∆k(u) = −K∆k(1)
u−m/2 − 1

u− 1
+ H∆k(u, u−1)



Some integration by parts formulas

ϕ0(kjK( /4)(ρ)) = K(1)ϕ0(kjρ)

ϕ0(kjρ1 /4(ρ2)) = ϕ0(kj /4−1(ρ1)ρ2)

ϕ0(kj∇2k) = −ϕ0(∇kj∇k),

where

∇kj = kj−1 /4j − 1
/4− 1

(∇k)



In dim M = 2,

FLogDet′(k) = ϕ0

(
k−2Tζ ′∆−k

( /4)(∇k)∇k
)
· g−1,

where

−Tζ ′∆−k
(u) = K∆k(1)

ln y
(1− y)2

ˆ 1

0

(
y−s − 1

)
ds

− 1
2

ˆ 1

0

Å
ys − 1
y− 1

ã2
T∆k(y

s) ln yds



Variational Formula

Theorem (Liu, 17)
Let j ∈ R, consider F(k) = ϕ0

(
kjT( /4)(∇k)∇k

)
· g−1, then the functional

gradient at point k is given by:

gradk F = kjKT( /4)(∇2k) · g−1 + kj−1HT( /4(1), /4(2))(∇k · ∇k) · g−1.

where

−KT(u) = T(u) + ujT(u−1),

−HT(u, v) = uj−1[u−1, v]KT − (uv)j−1[(uv)−1, v−1]KT − [uv, u]KT.

In particular, we observe the following symmetries:

KT(u) = ujKT(u−1), HT(u, v) = (uv)j−1HT(v−1, u−1)



Symbolic verification

In terms of Hypergeometric functions:

K∆k(y; m) =
4
m

K3,1(y; m)− K2,1(y; m),

H∆k(y1, y2; m) = (
4
m

+ 2)H2,1,1 (y1, y2; m)− 4y1H2,2,1 (y1, y2; m)

m

− 8H3,1,1 (y1, y2; m)

m
.

Theorem (Liu, 17)
Let j = −m/2− 1, Connes-Moscovici relations:

−H∆k(u, v) = uj−1[u−1, v]K∆k − (uv)j−1[(uv)−1, v−1]K∆k − [uv, u]K∆k

holds for all m ≥ 2.



Symmetry Breaking

I In the commutative world, metrics are symmetric:

g′ = ehg, g = e−hg′.

I For a noncommutative coordinate h, the appearance of the
spectral functions shows vividly the some fundemental
difference bewteen g and g′.



Symmetry bending along a projection p in C∞(T2
θ)

I Let s ∈ R, h , hs = sp, then ∇h has the following
eigen-decomposition with respect to the modular derivation
/5 = [·, p]:

∇h = I1(h) + I2(h) = sp(∇p) + s(∇p)p,

where I1(h) and I2(h) corresponds to eigenvalues −s and s
respectively, that is /5(p(∇h)) = −sp(∇h).

I For ∇2h, we have the following decomposition with eigenvalues
0,−s, s, 0: ∇2h = II1(h) + · · ·+ II4(h), where

II1(h) = sp(∇2p)p, II2(h) = sp(∇2p)(1− p),

and

II3(h) = s(1− p)(∇2p)p, II4(h) = s(1− p)(∇2p)(1− p),



I Let g be the flat metric on T2 and g′ = ehg, then the Gaussian
curvatureRg′ = ∆h = s∆p.

I LetR(s) , R(h) = e−h gradh FLogDet′ be the normalized
Gaussian curvature for (C∞(T2

θ), ∆k).

Proposition (Connes-Moscovici,14)

Upto a factor π/4,

R(s) = sK̃(s)∆(p) +
s2

2
K̃′(s) [p∆(p)p + (1− p)∆(p)(1− p)]

with

1
4

sK̃(s) = 2
Å

1
es − 1

− 1
s

ã
+ 1,

1
8

s2K̃′(s) =
−ses

(es − 1)2 −
1

es − 1
+

2
s
− 1

2
.

In particular,R(s) is bounded in s.



In the calculation, CM functional relation

H̃(u, v) = −[u + v, u]K̃ + [u + v, v]K̃ + [−u, v]K̃

is used to derive:
s
2

H̃(s,−s) = sK̃′(s) + 2(K̃(s)− K̃(0)).


