Hypergeometric function and Modular curvature

Yang Liu

MPIM, Bonn

Workshop on Noncommutative Geometry and Representation Theory May 13, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Notations for \mathbb{T}^2_{θ}

Smooth NC torus:

$$C^{\infty}(\mathbb{T}^2_{\theta}) = (C^{\infty}(\mathbb{T}^2), \times_{\theta}) = \left\{ \sum a_{n,m} U^n V^m \right\}$$

where

- $UU^* = 1, VV^* = 1 \text{ and } UV = e^{2\pi i\theta}VU.$
- $a_{n,m}$ is of rapidly decay in $(n,m) \in \mathbb{Z}^2$.
- $U \mapsto e^{ix}, V \mapsto e^{iy}$.

• Canonical trace
$$\varphi_0 : C^{\infty}(\mathbb{T}^2_{\theta}) \to \mathbb{C}$$
:

$$\varphi_0\left(\sum a_{n,m}U^nV^m\right)=a_{0,0}$$

→ H₀ is the Hilbert space completion of C[∞](T²_θ) with respect to the inner product:

$$\langle a,b\rangle = \varphi_0(b^*a).$$

• $C^{\infty}(\mathbb{T}^2_{\theta}) \subset B(\mathcal{H}_0)$ via left multiplication.

Notations for \mathbb{T}^2_{θ}

•
$$\mathbb{T}^2$$
 action: $r = (r_1, r_2) \in \mathbb{R}^2 / \mathbb{Z}^2$,
 $\alpha_r(U^n V^m) = e^{2\pi i (r_1 n + r_2 m)} U^n V^m$

▶ Basic derivations: δ_1 and δ_2 , play the role of $-i\partial_x$ and $-i\partial_y$ respectively:

$$\delta_1(U) = U, \ \delta_1(V) = 0, \ \delta_2(U) = 0, \ \delta_2(V) = V.$$

• Let $\tau \in \mathbb{C}$ with $\Re \tau > 0$ be the modular parameter of complex structures on \mathbb{T}^2 . The analog complex structures on \mathbb{T}^2_{θ} is given by the $\bar{\partial}$ -operator:

$$\bar{\partial} = \delta_1 + \bar{\tau} \delta_2, \ \bar{\partial}^* = \delta_1 + \tau \delta_2,$$

and the flat Dolbeault Laplacian for $\tau = \sqrt{-1}$:

$$\Delta = \delta_1^2 + \delta_2^2.$$

Conformal change of metric $g' = e^h g$

- Weyl factor: $k = e^h$, where $h = h^* \in C^{\infty}(\mathbb{T}^2_{\theta})$.
- Rescaled volume functional:

$$\varphi(a) = \varphi_0(ae^{-h}), \ \forall a \in C^{\infty}(\mathbb{T}^2_{\theta})$$

• φ is no longer a trace. It is a weight with the KMS property:

$$\varphi(ab) = \varphi(b \not \Delta(a)), \ \forall a, b \in C^{\infty}(\mathbb{T}^2_{\theta}),$$

where \triangle is called the modular operator, its logarithm is denoted by $end = \log \triangle$:

$$\measuredangle(a) = k^{-1}ak, \ \bigtriangledown(a) = [a, h].$$

Conformal change of metric $g' = e^h g$

New metric g' is implemented by the Dolbeault Laplacian with respect to φ:

$$\Delta_{\varphi} = \bar{\partial}_{\varphi}^* \bar{\partial} = k^{1/2} \Delta k^{1/2},$$

$$\Delta_k = k \Delta = k^{1/2} \Delta_{\varphi} k^{-1/2}.$$

► Local invariants for $(C^{\infty}(\mathbb{T}^m_{\theta}), \Delta_k)$ are recorded in the small time $(t \to 0)$ heat asymptotic:

$$\operatorname{Tr}(ae^{-t\Delta_k}) \sim \sum_{j=0}^{\infty} V_j(a, \Delta_k) t^{(j-m)/2}, \; \forall a \in C^{\infty}(\mathbb{T}_{\theta}^m).$$

► Each V_j is a linear functional in a and is determined by its functional density v_j ∈ C[∞](T^m_θ):

$$V_j(a,\Delta_k) = \varphi_0(av_j), \ \forall a \in C^{\infty}(\mathbb{T}^m_{\theta}).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectral Geometry for Riemannian manifolds

Let (M, g) be a closed Riemannian manifold and Δ be the scalar Laplacian operator.

- All the odd coefficients vanish since the manifold has no boundary.
- In general, the even heat coefficients involve complicated combinations of the components of the curvature tensor and all its derivatives.
- ► Upto a universal constant, the first one equals the volume functional, that is, v₀ = 1:

$$V_0(a,\Delta) = \int_M a d\mu_g, \ \forall a \in C^\infty(M).$$

• The second one recovers the scalar curvature function: $v_2 = S_g/6$:

$$V_2(a,\Delta) = \int_M a(S_g/6)d\mu_g, \ \forall a \in C^{\infty}(M).$$

Modular Scalar Curvature

Definition

We define the scalar curvature $R_{\Delta_k} \in C^{\infty}(\mathbb{T}_{\theta}^m)$ to be the functional density of the second heat coefficient:

$$V_2(a,\Delta_k) = \varphi_0\left(aR_{\Delta_k}\right), \forall a \in C^{\infty}(\mathbb{T}^m_{\theta}).$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The full expression of R_{Δ_k} has been computed in various settings: Connes-Moscovici, Khalkhali-Fathizadeh, Moscovici-Lesch, Liu.

Modular Scalar Curvature

Theorem (Full local expression of
$$R_{\Delta_k}$$
)
Recall $k = e^h$ is the Weyl factor, $\Delta(a) = k^{-1}ak$ and $\forall(a) = [a, h]$.
 $R_{\Delta_k} = k^{-m/2}K(\Delta)(\nabla^2 k) \cdot g^{-1} + k^{-m/2-1}H(\Delta^{(1)}, \Delta^{(2)})(\nabla k \nabla k) \cdot g^{-1}$
 $= e^{(-m/2+1)h} \left(\tilde{K}(\forall)(\nabla^2 h) \cdot g^{-1} + \tilde{H}(\forall^{(1)}, \forall^{(2)})(\nabla h \nabla h) \cdot g^{-1} \right)$

• g^{-1} is the metric tensor on the cotangent bundle so that

$$-(\nabla^2 k) \cdot g^{-1} = \Delta k = \sum_{j=1}^{m} \delta_j^2(k)$$
$$(\nabla h \nabla h) \cdot g^{-1} = \langle dh, dh \rangle_{g^{-1}} = \sum_{j=1}^{m} [\delta_j(k)]^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

In Connes-Moscovici's paper, the one variable function is a generating function of Bernoulli numbers:

$$\tilde{K}(u) = 8 \sum_{1}^{\infty} \frac{B_{2n}}{(2n)!} u^{2n-2}.$$

Connes-Moscovici relation:

$$\tilde{H}(u,v) = \frac{\tilde{K}(v) - \tilde{K}(u)}{v+u} + \frac{\tilde{K}(v+u) - \tilde{K}(v)}{u} - \frac{\tilde{K}(v+u) - \tilde{K}(u)}{v}.$$

Prominent role of divided difference (Lesch): since K̃ is a even function, the first term in the RHS above is indeed a divided difference:

$$\tilde{H}(u,v) = -[u+v,u]\tilde{K} + [u+v,v]\tilde{K} + [-u,v]\tilde{K},$$

where

$$[u,v]K \triangleq \frac{K(u)-K(v)}{u-v}.$$

◆□ → ◆□ → ◆三 → ◆三 → ○へぐ

Pseudo differential calculus

The heat operator can be defined using holomorphic functional calculus:

$$e^{-t\Delta_k} = rac{1}{2\pi i}\int_C e^{-\lambda}(\Delta-\lambda)^{-1}d\lambda,$$

where the contour *C* is chosen to be the imaginary axis, from $-\infty i$ to $i\infty$.

•
$$\sigma(\Delta_k) = p_2 + p_1 + p_0, p_2 = k |\xi|^2$$
 and $p_1 = p_0 = 0$.

Pseudo differential calculus provides a recursive algorithm to construct an approximation of the resolvent symbol:

$$\sigma\left((\Delta_k-\lambda)^{-1}\right) \backsim b_0+b_1+b_2+\ldots,$$

starting with the resolvent of the leading symbol:

$$b_0 = (p_2 - \lambda)^{-1} = (k |\xi|^2 - \lambda)^{-1}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Rearrangement Lemma

 The trace can be recovered by integrating the symbol over the cotangent bundle, in particular,

$$R_{\Delta_k} = \int_{\mathbb{R}^m} \frac{1}{2\pi i} \int_C e^{-\lambda} b_2(\xi, \lambda) d\lambda d\xi$$

= (*) $\int_0^\infty \frac{1}{2\pi i} \int_C e^{-\lambda} b_2(r, \lambda) d\lambda (r^{m-1} dr).$

b_j is a finite sum of terms of the form:

$$b_0^{a_0}\rho_1 b_0^{a_0} \cdots \rho_n b_0^{a_n} \triangleq (b_0^{a_0} \otimes \cdots \otimes b_0^{a_n}) \cdot (\rho_1 \cdots \rho_n)$$

= $(k^{(0)}r^2 - \lambda)^{-a_0} \cdots (k^{(n)}r^2 - \lambda)^{-a_n} \cdot (\rho_1 \cdots \rho_n),$

- コン・4回シュービン・4回シューレー

where ρ_j 's are the derivatives of the symbols of Δ_k . For the b_2 -term, ρ_j is either ∇k or $\nabla^2 k$.

Rearrangement Lemma

▶ For the *b*² term:

$$b_{2} = \sum \left(b_{0}^{a}(\nabla^{2}k)b_{0}^{b} + b_{0}^{\tilde{a}}(\nabla k)b_{0}^{\tilde{b}}(\nabla k)b_{0}^{\tilde{c}} \right) \cdot g^{-1}.$$

$$\begin{split} &\int_0^\infty \frac{1}{2\pi i} \int_C e^{-\lambda} b_0^a (\nabla^2 k) b_0^b d\lambda (r^{m-1} dr) \\ &= \int_0^\infty \frac{1}{2\pi i} \int_C e^{-\lambda} (k^{(0)} r^2 - \lambda)^{-a} (k^{(1)} r^2 - \lambda)^b d\lambda (r^{m-1} dr) \cdot (\nabla^2 k) \\ &= k^{-m/2} K_{a,b}(\not\Delta; m) (\nabla^2 k) \end{split}$$

► $H_{a,b,c}(\triangle^{(1)}, \triangle^{(2)}; m)(\nabla k \nabla k)$ is defined in a similar fashion.

• We have used the substitution:

$$k^{(1)} = k^{(0)} \triangle^{(1)}, \ k^{(2)} = k^{(0)} \triangle^{(1)} \triangle^{(2)}.$$

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

It follows that the modular curvature is of the form:

$$\begin{split} &\sum k^{j}K_{a,b}(\measuredangle;m)(\nabla^{2}k)\cdot g^{-1} \\ &+ \sum k^{j-1}H_{\tilde{a},\tilde{b},\tilde{c}}(\measuredangle^{(1)},\measuredangle^{(2)};m)(\nabla k\nabla k)\cdot g^{-1}, \end{split}$$

where j = -m/2, *m* is the dimension.

Hypergeometric Functions

Proposition (Liu, 17) Let $d_m = a + b + m/2 - 2$, $K_{a,b}(y;m) = \frac{\Gamma(d_m)}{\Gamma(a+b)} {}_2F_1(d_m,b;a+b;1-y)$

where

$${}_{2}F_{1}(a,b;c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} (1-t)^{c-b-1} t^{b-1} (1-zt)^{-a} dt.$$

Similarly, set $d_m = a + b + c + m/2 - 2$ *,*

$$H_{a,b,c}(u,v;m) = \frac{\Gamma(d_m)}{\Gamma(a+b+c)} F_1(d_m;c,b;a+b+c;1-uv,1-u).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

Differential and Contiguous Relations

• Examples for the one-variable family:

$$\begin{split} K_{a,b}(u;m+2) &= (d_m + ud/du)K_{a,b}(u;m), \\ K_{a,b+1}(u;m) &= (b^{-1}d/du)K_{a,b}(u;m), \\ K_{a,b+1}(u;m) &= (1 + b^{-1}ud/du)K_{a+1,b}(u;m) \end{split}$$

and

$$K_{a,b}(u;m+2) = aK_{a+1,b}(u;m) + bK_{a,b+1}(u;m).$$

Similar relations holds for $H_{a,b,c}(u,v;m)$.

We also have some reduction formulas for double integrals via divided difference:

$$F_1(a;1,1;b;x,y) = [x,y](z_2F_1(a,1;b;z))$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Geometric functionals

- Conformal change of metric g → g' = e^hg has the modular analogue: Δ → Δ_k = kΔ with k = e^h and h = h^{*} ∈ C[∞](T^m_θ).
- Einstein-Hilbert Functional:

$$F_{\rm EH}(h) = F_{\rm EH}(k) = V_2(1, \Delta_k) = \varphi_0(R_{\Delta_k}).$$

When m = 2: OPS (Osgood-Phillips-Sarnak) functional, a scaling invariant version of the Ray-Singer determinant functional:

$$F_{\text{LogDet}'}(k) = -\operatorname{LogDet}'(\Delta_k) + \log \varphi_0(k) = \zeta'_{\Delta_k}(0) + \log \varphi_0(k).$$

Facts, in demission two:

$$F_{\text{EH}}(k) = \zeta_{\Delta_k}(0) + 1,$$

$$F_{\text{LogDet}'}(k) = \zeta'_{\Delta}(0) - \int_0^1 V_2(h, \Delta_{k_s}) ds,$$

where $k_s \triangleq k^s$ for $s \in \mathbb{R}$.

Spectral zeta functions

For $a \in C^{\infty}(\mathbb{T}^m_{\theta})$,

$$\zeta_{\Delta_k}(z;a) = \operatorname{Tr}(a\Delta_k^{-z}(1-P_k)),$$

when $\Re z$ is sufficiently large and P_k is the orthonormal projection to the kernel of Δ_k , with a meromorphic continuation via the Mellin's transform and heat asymptotic:

$$\zeta_{\Delta_k}(z;a) = \frac{1}{\Gamma(z)} \int_0^\infty t^{z-1} \operatorname{Tr}(ae^{-t\Delta_k}(1-P_k)) dt.$$

Proposition (Gauss-Bonnet Thm for \mathbb{T}^2_{θ})

The EH-action $F_{EH}(k)$ *is a constant functional in k, in other words,*

$$\zeta_{\Delta_k}(0) = \zeta_{\Delta}(0).$$

Connes-Tretkoff, Khalkhali-Fathizadeh.

Modular Curvature as Functional Gradients

Let $a = a^* \in C^{\infty}(\mathbb{T}^m_{\theta})$, we consider variation along *a* in the following way:

$$h_{\varepsilon} = h + a\varepsilon, \ k_{\varepsilon} = e^{h + a\varepsilon}, \ \delta_a \triangleq \frac{d}{d\varepsilon}\Big|_{\varepsilon = 0}$$

Definition

Let *F* be a functional in *h* or $k = e^h$, the functional gradient $\operatorname{grad}_k F \in C^{\infty}(\mathbb{T}^m_{\theta})$ is the uniquely determined by the property:

$$\delta_a F(k) = \varphi_0(\delta_a(k)\operatorname{grad}_k F), \ \forall a \in C^{\infty}(\mathbb{T}^m_{\theta}).$$

Similarly, we define $\operatorname{grad}_h F$ via:

$$\delta_a F(h) = \varphi_0(h \operatorname{grad}_h F), \ \forall a \in C^{\infty}(\mathbb{T}_{\theta}^m).$$

Modular Curvature as Functional Gradients

By studying the variation of the heat operator, we obtain that for $m \ge 2$

$$\delta_a F_{\rm EH}(k) = \frac{2-m}{2} V_2(\delta_a(k)k^{-1}, \Delta_k),$$

therefore: (compare to the variation of the scalar curvature)

$$\operatorname{grad}_k F_{\operatorname{EH}} = \frac{2-m}{2}k^{-1}R_{\Delta_k}.$$

When m = 2, (for closed surfaces, the result is knows as Polyakov's conformal anomaly):

$$\delta_a F_{\text{LogDet}'}(k) = -V_2(\delta_a(k)k^{-1}, \Delta_k),$$

thus

$$\operatorname{grad}_k F_{\operatorname{LogDet}'} = -k^{-1}R_{\Delta_k}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

It suggests that $\operatorname{grad}_k F$ is of the form:

$$k^{j}K(\measuredangle)(\nabla^{2}k)\cdot g^{-1}+k^{j-1}H(\measuredangle^{(1)},\measuredangle^{(2)})(\nabla k\cdot\nabla k)\cdot g^{-1},$$

$$K = K_{\Delta_k}, H = H_{\Delta_k}$$

by comparing the spectral functions.

and

Computing $\operatorname{grad}_k F$ via its local formula

• Upto a constant, both $F_{EH}(k)$ and $F_{LogDet'}(k)$ are of the form:

$$F(k) = \varphi_0\left(k^j T(\measuredangle)(\nabla k)\nabla k\right) \cdot g^{-1}, \ j \in \mathbb{R}.$$

Proposition

Let m be the dimension parameter,

$$F_{\rm EH}(k) = \varphi_0 \left(k^{-m/2 - 1} T_{\Delta_k}(\measuredangle) (\nabla k) \nabla k \right) \cdot g^{-1}$$

with

$$T_{\Delta_k}(u) = -K_{\Delta_k}(1)\frac{u^{-m/2}-1}{u-1} + H_{\Delta_k}(u, u^{-1})$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Some integration by parts formulas

$$\varphi_0(k^j K(\measuredangle)(\rho)) = K(1)\varphi_0(k^j \rho)$$
$$\varphi_0(k^j \rho_1 \measuredangle(\rho_2)) = \varphi_0(k^j \measuredangle^{-1}(\rho_1)\rho_2)$$

$$\varphi_0(k^j \nabla^2 k) = -\varphi_0(\nabla k^j \nabla k),$$

where

$$\nabla k^{j} = k^{j-1} \frac{\not \mathbb{A}^{j} - 1}{\not \mathbb{A} - 1} (\nabla k)$$

In dim
$$M = 2$$
,

$$F_{\text{LogDet}'}(k) = \varphi_0 \left(k^{-2} T_{\zeta'_{\Delta-k}}(\Delta)(\nabla k) \nabla k \right) \cdot g^{-1},$$

where

$$\begin{aligned} -T_{\zeta'_{\Delta-k}}(u) &= K_{\Delta_k}(1) \frac{\ln y}{(1-y)^2} \int_0^1 \left(y^{-s} - 1\right) ds \\ &- \frac{1}{2} \int_0^1 \left(\frac{y^s - 1}{y - 1}\right)^2 T_{\Delta_k}(y^s) \ln y ds \end{aligned}$$

Variational Formula

Theorem (Liu, 17)

Let $j \in \mathbb{R}$, consider $F(k) = \varphi_0 \left(k^j T(\triangle) (\nabla k) \nabla k \right) \cdot g^{-1}$, then the functional gradient at point k is given by:

$$\operatorname{grad}_{k} F = k^{j} K_{T}(\operatorname{A})(\nabla^{2} k) \cdot g^{-1} + k^{j-1} H_{T}(\operatorname{A}^{(1)}, \operatorname{A}^{(2)})(\nabla k \cdot \nabla k) \cdot g^{-1}.$$

where

$$-K_T(u) = T(u) + u^j T(u^{-1}),$$

-H_T(u,v) = u^{j-1}[u⁻¹,v]K_T - (uv)^{j-1}[(uv)⁻¹,v⁻¹]K_T - [uv,u]K_T.

In particular, we observe the following symmetries:

$$K_T(u) = u^j K_T(u^{-1}), \ H_T(u,v) = (uv)^{j-1} H_T(v^{-1},u^{-1})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Symbolic verification

In terms of Hypergeometric functions:

$$\begin{split} K_{\Delta_k}(y;m) &= \frac{4}{m} K_{3,1}(y;m) - K_{2,1}(y;m), \\ H_{\Delta_k}(y_1, y_2;m) &= (\frac{4}{m} + 2) H_{2,1,1}(y_1, y_2;m) - \frac{4y_1 H_{2,2,1}(y_1, y_2;m)}{m} \\ &- \frac{8 H_{3,1,1}(y_1, y_2;m)}{m}. \end{split}$$

Theorem (Liu, 17) Let j = -m/2 - 1, Connes-Moscovici relations: $-H_{\Delta_k}(u, v) = u^{j-1}[u^{-1}, v]K_{\Delta_k} - (uv)^{j-1}[(uv)^{-1}, v^{-1}]K_{\Delta_k} - [uv, u]K_{\Delta_k}$ holds for all $m \ge 2$.

Symmetry Breaking

In the commutative world, metrics are symmetric:

$$g'=e^hg, \ g=e^{-h}g'.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ For a noncommutative coordinate *h*, the appearance of the spectral functions shows vividly the some fundemental difference bewteen *g* and *g*'.

Symmetry bending along a projection *p* in $C^{\infty}(\mathbb{T}^2_{\theta})$

$$\nabla h = \mathbf{I}_1(h) + \mathbf{I}_2(h) = sp(\nabla p) + s(\nabla p)p,$$

where $I_1(h)$ and $I_2(h)$ corresponds to eigenvalues -s and s respectively, that is $\nabla (p(\nabla h)) = -sp(\nabla h)$.

► For $\nabla^2 h$, we have the following decomposition with eigenvalues 0, -s, s, 0: $\nabla^2 h = II_1(h) + \cdots + II_4(h)$, where

$$II_1(h) = sp(\nabla^2 p)p, II_2(h) = sp(\nabla^2 p)(1-p),$$

and

$$II_3(h) = s(1-p)(\nabla^2 p)p, II_4(h) = s(1-p)(\nabla^2 p)(1-p),$$

- Let g be the flat metric on T² and g' = e^hg, then the Gaussian curvature R_{g'} = Δh = sΔp.
- ► Let $\mathcal{R}(s) \triangleq \mathcal{R}(h) = e^{-h} \operatorname{grad}_{h} F_{\operatorname{LogDet}'}$ be the normalized Gaussian curvature for $(C^{\infty}(\mathbb{T}^{2}_{\theta}), \Delta_{k})$.

Proposition (Connes-Moscovici,14)

Upto a factor $\pi/4$,

$$\mathcal{R}(s) = s\tilde{K}(s)\Delta(p) + \frac{s^2}{2}\tilde{K}'(s)\left[p\Delta(p)p + (1-p)\Delta(p)(1-p)\right]$$

with

$$\begin{split} \frac{1}{4}s\tilde{K}(s) &= 2\left(\frac{1}{e^s-1}-\frac{1}{s}\right)+1,\\ \frac{1}{8}s^2\tilde{K}'(s) &= \frac{-se^s}{(e^s-1)^2}-\frac{1}{e^s-1}+\frac{2}{s}-\frac{1}{2}. \end{split}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

In particular, $\mathcal{R}(s)$ is bounded in s.

In the calculation, CM functional relation

$$\tilde{H}(u,v) = -[u+v,u]\tilde{K} + [u+v,v]\tilde{K} + [-u,v]\tilde{K}$$

is used to derive:

$$\frac{s}{2}\tilde{H}(s,-s) = s\tilde{K}'(s) + 2(\tilde{K}(s) - \tilde{K}(0)).$$