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Notations for T3

» Smooth NC torus:
C™(T3) = (C™(T?), xg) = {>_ anmlI"V"}

where
» UU*=1,VV* =1and UV = 2™V,
> .y is of rapidly decay in (n,m) € 72.
> U e, Vi e,

» Canonical trace ¢ : C*(T3) — C:

(o] (Z An,m U”Vm) = 110/0.

» H, is the Hilbert space completion of C*(T%) with respect to the
inner product:
(a,b) = @o(b™a).

» C(T3) C B(Hp) via left multiplication.



Notations for T3

» T2 action: r = (r1,7r2) € R2/72,
ar(unvm) _ e?.rri(rln-i-rzm) urym

> Basic derivations: J; and 6, play the role of —idy and —id,
respectively:

S1(U) = U, 6,(V) =0, &(U) =0, 6,(V) = V.

» Let T € C with 7 > 0 be the modular parameter of complex
structures on T2. The analog complex structures on T3 is given
by the d-operator:

0= 01+ Tdy, o* = 01+ 1oy,
and the flat Dolbeault Laplacian for T = v/ —1:

A =67 +63.



Conformal change of metric ¢’ = e'¢

» Weyl factor: k = ¢!, where h = h* € C*(T3).
» Rescaled volume functional:

@(a) = go(ae™™), Va € C*(T3)
> ¢ isno longer a trace. It is a weight with the KMS property:
plab) = g(b45(a)), Va,b € C(Tf),

where A is called the modular operator, its logarithm is denoted

by 7 = log /A:
MAa) =k""ak, v (a) = [a,h).



Conformal change of metric ¢’ = e'¢

» New metric ¢’ is implemented by the Dolbeault Laplacian with
respect to ¢:

Ap =353 = K/2AK2,
Ay = kA = K27 k7172,

» Local invariants for (C*(T}'), Ay) are recorded in the small time
(t = 0) heat asymptotic:

Tr(ae ™) S Via, A)UI™72, Ya e C°(TY).
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» Each V; is a linear functional in 2 and is determined by its
functional density v; € C*(Ty'):

Vj(a, Ap) = (po({wj), Va € C*(Ty).



Spectral Geometry for Riemannian manifolds
Let (M, g) be a closed Riemannian manifold and A be the scalar
Laplacian operator.

» All the odd coefficients vanish since the manifold has no
boundary.

> In general, the even heat coefficients involve complicated
combinations of the components of the curvature tensor and all
its derivatives.

» Upto a universal constant, the first one equals the volume
functional, that is, vy = 1:

Vo(a,A) :/Madyg, Va € C®(M).

» The second one recovers the scalar curvature function:

Va(a,A) = /M a(S¢/6)dpg, a € C(M).



Modular Scalar Curvature

Definition
We define the scalar curvature Ry, € C*(T}') to be the functional
density of the second heat coefficient:

Va(a, Ax) = @o (aRp, ), Va € C(Tg').

The full expression of Rp, has been computed in various settings:
Connes-Moscovici, Khalkhali-Fathizadeh, Moscovici-Lesch, Liu.



Modular Scalar Curvature

Theorem (Full local expression of Ry, )

Recall k = é" is the Weyl factor, /A(a) = k™ 'ak and v (a) = [a, h].

—k—m/zk(m( %) -8~ + k2 H(AW, 4@ (V) - g7
20k (R(sp) (V2h) - ¢~ + H(zp D), @) (VhVh) -g77)

» ¢~ !is the metric tensor on the cotangent bundle so that

—(V?k) g = Ak = 252

m

(VhVh) g~ = (dh,dh) o1 = [6;(k)]*.
1



» In Connes-Moscovici’s paper, the one variable function is a
generating function of Bernoulli numbers:

# _ = By, 2n—2
K(u)—SZ(Zn)!u .
1

» Connes-Moscovici relation:

. _ K(v) —K(u) |, K(v+u)—K(v) K(v+u)—K(u)
H(u,0) = vru u a v ’

» Prominent role of divided difference (Lesch): since K is a even
function, the first term in the RHS above is indeed a divided
difference:

H(u,v) = —[u+v,u]lK+ [u+0,0K+ [-u,7]K,

where

K(x) ~K(v)

[u,v]K £
u—ov



Pseudo differential calculus

> The heat operator can be defined using holomorphic functional
calculus:

€ / e MA—MN)"lA,
C

—tA
etk = -
27ti

where the contour C is chosen to be the imaginary axis, from
—o0i to ico.

> 0(A) = p2+p1+po, pr = k|E[ and pr = po = 0.
» Pseudo differential calculus provides a recursive algorithm to
construct an approximation of the resolvent symbol:

o (A=A ) ~bg by byt
starting with the resolvent of the leading symbol:

bo = (pp—A) ' = (k[g]?— 1)L



Rearrangement Lemma

> The trace can be recovered by integrating the symbol over the
cotangent bundle, in particular,

_ 1 Y
R~ [ 5o /C ey (g, A)dAdE

= (%) /O mﬁ /C e Moo (r, A)dA (™ Ldr).

> bj is a finite sum of terms of the form:
b o1by - - - pubgt = (b ® - - - @bg") - (1 Pn)
(k(O) 2 _ (). .. (k(n)r2 — )" (o1 pu),

where p;’s are the derivatives of the symbols of A. For the
by-term, p; is either Vk or Vk.



Rearrangement Lemma

» For the b, term:

by = (bG(V2k)bG + b (V)b (VE)BG) - g7

—Ara 2 b m—1
/0 2m/ by (Vok)bodA (7"~ dr)
:/0 2m/ e MO = )7 (2 = M)A dr) - (V)
= k= M/ZKa,b(ﬁlm)(v2k)

> Ha,blc(ﬁ(l), L@ m)(VkVk) is defined in a similar fashion.
» We have used the substitution:

KD = kO 1) (2 — 0 x (1) 42,



It follows that the modular curvature is of the form:

D WK (5m) (V) - g7
+> W H, (AW, 2P m) (VEVE) g7

where j = —m /2, m is the dimension.



Hypergeometric Functions

Proposition (Liu, 17)
Letdy, =a+b+m/2—2,

T'(dm)
I'(a+Db)

Kop(y;m) = oF1(dm, b;a+b;1—y)

where

oF1(a,b;c;z) = 1“(19)11:((?—19) /01(1 _p)eblh1(] _ ) agy,

Similarly, set dyy =a+b+c+m/2 -2,

T'(dm)

Hape(rom) = 13010

Fi(dm;c,b;a+b+c¢1—uv, 1 —u).



Differential and Contiguous Relations

» Examples for the one-variable family:

Ko p(u;m+2) = (di +ud/du)K, (u;m),
Kopi1 (u;m) = (b~'d/du)K,, (u;m),
Kopir(5m) = (1 b~ ud /du)Ky 1, (u; m)

and
Kop(u;m+2) = aKyyqp(u;m) + bKypyq (u;m).

Similar relations holds for H,}, .(u, v; m).

» We also have some reduction formulas for double integrals via
divided difference:

Fi(1,L;b;x,y) = [x,y](z2F1(a,1;b;2))



Geometric functionals

» Conformal change of metric g — ¢’ = €’'¢ has the modular
analogue: A — Ay = kA with k = " and h = h* € C*(T%).
» Einstein-Hilbert Functional:

Feu(h) = Fgu(k) = Va(1, Ap) = @o(Ra, )

» When m = 2: OPS (Osgood-Phillips-Sarnak) functional, a scaling
invariant version of the Ray-Singer determinant functional:

Frogper (k) = — LogDet'(Ay) +log ¢o(k) = ¢4 (0) +log o (k).
» Facts, in demission two:
Fer(k) = 0 (0) +1,

1
Frogper (K) = 4 (0) — /0 Vol Ay )ds,

where ks £ k° fors € R.



Spectral zeta functions
Fora € C*(Ty),
Ca(z:a) = Tr(ad (1= Py)),

when ¥z is sufficiently large and Py is the orthonormal projection to
the kernel of Ay, with a meromorphic continuation via the Mellin’s
transform and heat asymptotic:

Oa(za) = /oo L Tr(ae ™2 (1 — Py) )dt.

I(z) Jo

Proposition (Gauss-Bonnet Thm for T%)

The EH-action Fgyy (k) is a constant functional in k, in other words,

T (0) = Za(0).

Connes-Tretkoff, Khalkhali-Fathizadeh.



Modular Curvature as Functional Gradients

Leta = a* € C*(T}'), we consider variation along a in the following
way:

d

he =h+ae, k. =e"%, 5,5 =
dele=0

Definition
Let F be a functional in 1 or k = ¢”, the functional gradient
grad, F € C*(T}) is the uniquely determined by the property:

0aF(k) = @o(da(k) grad, F), Va € C*(Ty).
Similarly, we define grad,, F via:

0.F(h) = @o(hgrad, F), Va e C*(Ty).



Modular Curvature as Functional Gradients

By studying the variation of the heat operator, we obtain that for
m>2
2—m 1
SaFrr(k) = —5—=Va(da(k)k™", Ag),

therefore: (compare to the variation of the scalar curvature)

gradk FEH 2 k 1RAk

When m = 2, (for closed surfaces, the result is knows as Polyakov’s
conformal anomaly):

éﬂFLogDet/ (k) = _VZ(‘Sﬂ(k)killAk)/

thus

grad FLogDet/ = _kilRAk'




It suggests that grad, F is of the form:
KK(A)(V2K) - g L + B TH(AW, 5@ (Vk- Vk) - g7,
and
K=Ky, H=Hy,

by comparing the spectral functions.



Computing grad, F via its local formula

» Upto a constant, both Fgy(k) and Flogpet (k) are of the form:

F(k) = go (KT(£)(VK)VK) -g7", j€R.

Proposition

Let m be the dimension parameter,

Feri(k) = @o (k"> Ta (4)(VE)VK) - g7,
with
umz _q

Ty (u) = _KAk(l)ﬁ

+ HAk (ur uil)



Some integration by parts formulas

Po(KWK(4)(p)) = K(1)go(Kp)
Po(Kp1(p2)) = @o(K A~ (p1)p2)

@0 (KV?k) = —o (VK VE),

where

114A
VK =k K

(Vk)



IndimM =2,
F (k) = k2T, (L) (VE)VEk) - -1
LogDet ) Ok 8

where

n 1
~Ty () = KAk(l)(ll_];)z/O (y™ —1)ds

11 yS—1)2 ;
_E/o (yl Ty, (v°) Inyds




Variational Formula

Theorem (Liu, 17)

Letj € R, consider F(k) = @o (KT(A)(Vk)Vk) - g1, then the functional
gradient at point k is given by:

grad, F = KKr(4)(V?) -g ' + K 1Hr (4, 4®)(Vk- k) - g7,
where

—Kr(u) = T(u) + WT(u™),

—Hr(u,0) = W Hu™', v]Kr — (u0) = [(uv) ™, o~ |Kr — [uv, u]Kr.
In particular, we observe the following symmetries:

KT(”) = quT(u_l)r HT(”/ 'U) = (uv)j_lHT(v_ll u_l)



Symbolic verification

In terms of Hypergeometric functions:

4
Ka (ysm) = —Ks1(y;m) — Ko (y;m),

4 4y H. JYo,m
Hp, (y1,y2,m) = (% +2)Hy 11 (y1,y2,m) — Y1 2’2’1”(1% y2im)
_ 8H311 (y1,y2;m)

- .

Theorem (Liu, 17)

Let j = —m/2 — 1, Connes-Moscovici relations:
—Hp, (u,0) = uj_l[u_l,v]KAk - (uv)j_l[(uv)_l,v_l]KAk — [uv, u]Ky,

holds for all m > 2.



Symmetry Breaking

> In the commutative world, metrics are symmetric:

g =dg g=eg.

» For a noncommutative coordinate /1, the appearance of the
spectral functions shows vividly the some fundemental
difference bewteen g and g’



Symmetry bending along a projection p in C*(T%)

» Lets € R, h £ hy = sp, then V1 has the following
eigen-decomposition with respect to the modular derivation

v = [pl:
Vh =T1;(h) + I (h) = sp(Vp) +s(Vp)p,

where I; (1) and I, (h) corresponds to eigenvalues —s and s
respectively, thatis v/ (p(Vh)) = —sp(Vh).

» For V2h, we have the following decomposition with eigenvalues
0,—s,5,0: V2h =TIy (h) + - - - + 114 (h), where

1Ly (h) = sp(V?p)p, Ia(h) = sp(V2p)(1 —p),

and

I5(h) = s(1—p)(V?p)p, Wa(h) =s(1—p)(V?p)(1—p),



> Let g be the flat metric on T2 and ¢’ = ¢’g, then the Gaussian
curvature Ry = Ah = sAp.

> Let R(s) = R(h) = e grad, Fi ogper e the normalized
Gaussian curvature for (C(T%), Ay).

Proposition (Connes-Moscovici,14)
Upto a factor 1t/4,

Sz~
R(s) = sK(s)A(p) + 5 K'(s) [PA(p)p + (1 = p)A(p) (1 = p)]

with
1 < 1 1)
~sK(s) = _ =
sK(s) — . +1,
1,5, —se’ 1 2 1
~ 2K/ (s) = c_
g =y st 2

In particular, R(s) is bounded in s.



In the calculation, CM functional relation
H(u,0) = —[u+o,ulK+ [u+0,9 K+ [—u,v]K
is used to derive:

H(s, —s) = sK'(s) + 2(K(s) — K(0)).

N »



