On coarse embedding and equivariant coarse Baum-Connes conjecture

Xianjin Wang

(joint work with Benyin Fu and Guoliang Yu)

College of Mathematics and Statistics, Chongqing University, Chongqing

Workshop on noncommutative geometry and representation theory

.

Outline

- 2 Equivariant Roe algebra
- 3 Equivariant higher index problem

Coarse embedding into Hilbert space

Let H be a Hilbert space. A map

$$f: X \to H$$

from X to a Hilbert H is a coarse embedding if there exists non-decreasing function $\rho_-,\rho_+:[0,\infty)\to[0,\infty)$ with $\lim_{t\to\infty}\rho_\pm(t)=\infty$ such that

$$\rho_{-}(d(x,y)) \le \|f(x) - f(y)\| \le \rho_{+}(d(x,y))$$

for all $x, y \in X$.

Gromov's suggestion

Let $\Gamma = \pi_1(M)$ be the fundamental group of a closed manifold M, quipped with the word metric.

M. Gromov suggested that coarse embeddability of Γ into Hilbert space would be helpful to attack the Novikov conjecture for M.

Affirmative answer

Let X be a discrete metric space with bounded geometry.

Theorem (Guoliang Yu 2000)

If X is coarsely embeddable into Hilbert space, then the coarse Baum-Connes conjecture holds for X.

Applications

- The Novikov conjecture.
- The Gromov positive scalar curvature conjecture.
- The zero-in-the-spectrum conjecture.
- • •

Property A

Definition (Yu 2000)

A discrete metric space X has property A if for all $R, \varepsilon > 0$ there exists a family of finite non-empty subset A_x of $X \times \mathbb{N}$, indexed by x in X, and a number S > 0 such that

•
$$\frac{\#(A_x \triangle A_y)}{\#(A_x \cap A_y)} < \varepsilon$$
 if $d(x, y) \le R$;

•
$$A_x \subseteq B(x,S) \times \mathbb{N}$$
 for every $x \in X$.

Examples:

- trees.
- amenable groups; hyperbolic groups; discrete linear groups; groups acting on finite dimensional CAT(0) cube complexes...
- metric spaces with finite asymptotic dimension, or finite decomposition complexity, etc.

伺下 イヨト イヨト

Property A implies coarse embedding

Theorem (G. Yu 2000)

If X has property A then X is coarsely embdeddable in Hilbert space

Corollary

The coare Baum-Connes conjecture holds for amenable groups; hyperbolic groups; discrete linear groups; groups acting on finite dimensional CAT(0) cube complexes, etc.

More answers

Theorem (Kasparov-Yu 2006)

Let X be a discrete metric space with bounded geometry. If X admits a coarse embedding into a uniformly convex Banach space, then the Coarse Novikov Conjecture is true for X.

Definition

A Banach space E is uniformly convex if for any $\varepsilon>0$ there exists $\delta>0$ such that

$$1 - \left\|\frac{x+y}{2}\right\| > \delta$$

 $\text{for all } x,y\in S(E):=\{x\in E: \|x\|=1\} \text{ with } \|x-y\|\geq \varepsilon.$

Example

 H, ℓ^p, L^p, C_p (the Schatten p classes), for 1 .

Notations

- X: proper metric space with bounded geometry;
- Γ : a countable discrete group;
- H: separable Hilbert space;

A group action of Γ on X is a homomorphism

 $\alpha : \Gamma \to \mathsf{Isometry}(X).$

An action α is proper if for any $x \in X$ there is a compact neighborhood U such that the set

$$\{\gamma\in\Gamma|\gamma\cdot U\cap U\neq\emptyset\}$$

is finite. We call X a Γ -space if X admits a proper action of Γ .

Let ϕ be a *-representation from $C_0(X)$ to $\mathcal{B}(H)$. $T \in \mathcal{B}(H)$.

• The support Supp(T) of T is the complement of the set of points $(x, y) \in X \times X$ for which there exists $f, g \in C_0(X)$ s.t.

$$\phi(f)T\phi(g) = 0, \quad f(x) \neq 0, g(y) \neq 0.$$

• The propagation of T is defined to be

$$\sup\{d(x,y), x, y \in Supp(T)\}.$$

• T is said to be *locally compact* if $\phi(f)T$ and $T\phi(f)$ are compact for all $f \in C_0(X)$.

Example $X = \mathbb{Z}$

æ

Covariant representation

Let X be a Γ -space. For $\gamma \in \Gamma$ and $f \in C_0(X)$, define $\gamma(f) \in C_0(X)$ by $\gamma(f)(x) = f(\gamma^{-1}x).$

Let H be a Γ -Hilbert space and ϕ be the *-representation from $C_0(X)$ to $\mathcal{B}(H)$. $\rho: \Gamma \to \mathcal{U}(H)$ is a group homomorphism from Γ to the the set of all unitary elements in $\mathcal{B}(H)$

Definition

 ϕ is called a *covariant representation* if for all $v \in H$, $f \in C_0(X)$ and $\gamma \in \Gamma$,

$$\gamma(\phi(f))(v) = \rho(\gamma)\phi(f)\rho(\gamma)^*(v).$$

 $(C_0(X), \Gamma, \phi)$ is called a *covariant system*.

伺下 イヨト イヨト

The "definition" of equivariant Roe algebra

For $\gamma \in \Gamma$, $T \in \mathcal{B}(H)$, define $\gamma(T) \in \mathcal{B}(H)$ as

$$\gamma(T)(v) = \rho(\gamma)T\rho(\gamma)^*(v), \quad v \in H.$$

T is called Γ -invariant if $\gamma(T) = T$ for all $\gamma \in \Gamma$.

Definition

The equivariant Roe algebra $C^*(X, H)^{\Gamma}$ is the norm closure of the algebra of locally compact, Γ -invariant operator on H with finite propagation.

The "definition" of equivariant Roe algebra

Let
$$X = pt$$
, $\Gamma = \mathbb{Z}/2\mathbb{Z}$ and $H' = \ell^2(\Gamma) \otimes H$.
For $\gamma \in \Gamma$, $f \in \ell^2(\Gamma)$, $\gamma(f)(x) = f(\gamma^{-1}x)$.
Then

$$C^*(X,H)^{\Gamma} = \mathcal{K}(H)$$

but for $T \in C^*(X, H')^{\Gamma}$,

$$T = \begin{pmatrix} a & b \\ b & a \end{pmatrix}, \quad a, b \in \mathcal{K}(H).$$

Hence

$$C^*(X,H)^{\Gamma} \not\cong C^*(X,H')^{\Gamma}.$$

The definition of equivariant Roe algebra $C^*(X,H)^{\Gamma}$ depends on the choice of Hilbert spaces!

Admisible representation

The covariant system $(C_0(X), \Gamma, \phi)$ is said to be *admissible* if there exist a Γ -Hilbert space H_X and a separable and infinite dimensional Γ -Hilbert space V such that

- H is isomorphism to $H_X \otimes V$ as Γ -Hilbert space;
- $\phi = \phi_0 \otimes I$ for some Γ -equivariant *-homomorphism $\phi_0 : C_0(X) \to \mathcal{B}(H_X).$
- for all finite subgroup F of Γ , and F-invariant Borel subset E of X, $V \cong \ell^2(F) \otimes H_E$ as F-Hilbert space for some Hilbert space H_E with trivial action and

$$(\gamma\xi)(z) = \xi(\gamma^{-1}z), \gamma \in F, \xi \in \ell^2(F).$$

• • = = • • = =

Equivariant Roe algebra

Let $(C_0(X), \Gamma, \phi)$ be an admissible covariant system.

Definition

The equivariant Roe algebra $C^*(X, H)^{\Gamma}$ is defined to be the operator norm clousure of the *-algebra of all locally compact and Γ -invariant operators with finite propagation in $\mathcal{B}(H)$.

Proposition

The equivariant Roe algebra $C^*(X, H)^{\Gamma}$ does not depends on the choice of Hilbert space H.

 $C^*(X,H)^{\Gamma}$ can be abbreviated as $C^*(X)$.

• • = • • = •

Equivariant Roe algebra

Let X and Y be two metric spaces with proper Γ -action.

Definition

X and Y are equivariant coarse equivalent if there exists a coarse embedding $f: X \to Y$ such that f(X) is an ε -net of Y for some $\varepsilon > 0$ and $f(\gamma x) = \gamma f(x)$ for all $x \in X$ and $\gamma \in \Gamma$.

Proposition

If X and Y are Γ -equivariant coarse equivalent, then

$$C^*(X)^{\Gamma} \cong C^*(Y)^{\Gamma}.$$

Equivariant Roe algebra

Two special cases

• If X/Γ is compact, then

$$C^*(X)^{\Gamma} \stackrel{\text{Morita}}{\cong} C^*_r(\Gamma).$$

• If Γ is trivial, then

$$C^*(X)^{\Gamma} = C^*(X).$$

< ∃ >

The localization algebra

The localization algebra $C^*_L(X)^\Gamma$ associated to a metric space is the norm closure of the set of functions

$$f: [0,\infty) \to C^*(X)^{\Gamma}$$

such that

- *f* is uniformly continuous;
- f is bounded under $||f|| = \sup_{t \in [0,\infty)} ||f(t)||$, and
- propagation of f converges to 0 as $t \to \infty.$

Equivariant Baum-Connes conjecture

Let X be a proper metric space with a proper Γ action. For any d > 0, let e be the evaluation map from $C_L^*(P_d(X))^{\Gamma}$ to $C^*(P_d(X))^{\Gamma}$ defined by e(f) = f(0), where $P_d(X)$ is the Rip's complex. Then

$$e_*: \lim_{d \to \infty} K_*(C_L^*(P_d(X))^{\Gamma}) \to \lim_{d \to \infty} K_*(C^*(P_d(X))^{\Gamma}) = K_*(C^*(X)^{\Gamma}).$$

Equivariant Baum-Connes conjecture

 $e_*: \lim_{d\to\infty} K_*(C_L^*(P_d(X))^{\Gamma}) \to K_*(C^*(X)^{\Gamma})$ is an isomorphism.

• • = • • = •

Two special cases of equivariant Baum-Connes conjecture

- If X/Γ is compact, then
 - The Baum-Connes Conjecture asserts that e_* is an isomorphism.
 - $\bullet\,$ The Strong Novikov Conjecture states that e_* is an injection.
- If Γ is the trivial group, then
 - The Coarse Baum-Connes Conjecture asserts that e_* is an isomorphism.
 - The Coarse Novikov Conjecture states that e_* is an injection.

Some recent results

(2000) **G. Yu:** If X is coarsely embeddable into Hilbert space, then the coarse Baum-Connes conjecture holds for X.

(2006) **G. Kasparov, G. Yu:** ...uniformly convex Banach space, ... the coarse Novikov conjecture...

(2007) L. Shan, Q. Wang: ...non-positively curved manifold, ... the coarse Novikov conjecture...

(2008) **G. Gong, Q. Wang, G. Yu:** The maximal coarse Novikov conjecture holds for the expander graphs derived from some residually finite Property (T) groups.

(2010) **R. Willet, G. Yu:** The maximal coarse Baum-Connes conjecture holds for expander graphs with large girth.

(2013) **X. Chen, Q. Wang, G. Yu:** The maximal coarse Baum-Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space.

(2014) X. Chen, Q. Wang, Z. Wang: Fibred coarse embedding into non-positively curved manifolds and higher index problem (2015) X. Chen, Q. Wang, Z. Wang: The coarse Novikov conjecture and Banach spaces with Property (H)

• • = • • = •

Background Equivariant Roe algebra Equivariant higher index p

Results on equivariant coarse Baum-Connes conjecture

Theorem (L. Shan 2008)

If Γ acts properly, freely, on a non-positively curved simply connected manifold, then equivariant assembly map is injective.

Remark

THIS is the first result on non-cocompact actions.

Equivariant coarse embedding

Definition

Let X be a metric space, B a Banach space. A map $f: X \to B$ is a coarse embedding, if there exist two non-decreasing functions $\rho_-, \rho_+: \mathbb{R}_+ \to \mathbb{R}_+$ such that

•
$$\rho_{-}(d(x,y)) \le ||f(x) - f(y)|| \le \rho_{+}(d(x,y))$$
, for all $x, y \in X$.

•
$$\lim_{t \to \infty} \rho_-(t) = \infty.$$

Definition

If Γ is group acting properly on X, A map $f:X\to B$ is equivariant coarse embedding, if there exists a proper action α of Γ on B such that

•
$$f(\gamma \cdot x) = \alpha(\gamma) \cdot f(x)$$
 for all $x \in X$ and $\gamma \in \Gamma$.

Affine actions

Let Γ be a group and let V be a vector space. An affine action of Γ on V is a homomorphism $\alpha: \Gamma \to \operatorname{Aff}(V)$, where $\operatorname{Aff}(V)$ is the group of affine bijections $V \to V$. There exist a representation $\pi: \Gamma \to GL(V)$ and a map $b: \Gamma \to V$ such that

•
$$\alpha(g)v = \pi(g)v + b(g)$$
 for $g \in \Gamma$ and $v \in V$ and

• b satisfies the 1-cocycle relation

$$b(gh) = \pi(g)b(h) + b(g) \forall g, h \in \Gamma.$$

Affine actions

Theorem (Mazur-Ulam)

If V is a real Banach space, any isometry of V is affine.

Definition

A locally compact group Γ is a-T-menable if Γ admits a proper affine isometric action on a Hilbert space.

Fact

If metric space X is Γ -equivariant coarse embeddable in Hilbert space, then Γ is a-T-menable.

• • = • • = •

Examples of equivariant coarse embeddability

Example

Let X be a discrete metric space with a proper Γ action. Then X has a Γ -equivariant coarse embedding into $\ell^{\infty}(X)$.

Fix
$$x_0 \in X$$
 and set $\eta(x) = d(x, x_0)$. Let

$$f: X \to \ell^{\infty}(X), \qquad f(x)(y) = d(y, x) - \eta(y).$$

Let π be the regular action of Γ on $\ell^{\infty}(X)$ defined by

$$((\pi(g))\xi)(\gamma) = \xi(g^{-1}\gamma)$$

and let the affine isometric action to be

$$\alpha(g)\xi = \pi(g)\xi + \pi(g)\eta - \eta$$

for every $\xi \in \ell^{\infty}(X)$, all g and γ in Γ .

Examples of equivariant coarse embeddability

Theorem (N. Brown, E. Guentner+U. Haagerup, A.Przybyszewska)

Let X be a discrete metric space with bounded geometry and Γ be a discrete group acts on X properly. Then there exists a sequence of positive real numbers $\{p_n\}$ such that X admits a Γ -equivariant coarse embedding into ℓ^2 -direct sum $\bigoplus_n \ell^{p_n}(X)$.

Remark

Banach space $\bigoplus_n \ell^{p_n}(X)$ is strictly convex not uniformly convex.

Positive vs. negative definite kernel

Definition

A map $k: X \times X \to \mathbb{C}$ (or \mathbb{R}) is of positive type if for all finite sequences x_1, \dots, x_n of elements of X and $\lambda_1, \dots, \lambda_n$ of complex (or real) numbers, $\sum_{i,j=1}^n \lambda_i \overline{\lambda_j} k(x_i, x_j) \ge 0$.

Definition

A map $k: X \times X \to \mathbb{R}$ is of negative type if for all finite sequences x_1, \dots, x_n of elements of X and $\lambda_1, \dots, \lambda_n$ of real numbers such that $\sum_{i=1}^n \lambda_i = 0$, $\sum_{i,j=1}^n \lambda_i \lambda_j k(x_i, x_j) \leq 0$.

A positive (negative) type kernel is normalised if for all $x \in X$, k(x,x) = 1 (k(x,x) = 0).

< 同 ト < 三 ト < 三 ト

Equivariant coarse embedding into Hilbert space

Theorem (E. Guentner and J. Kaminker+ J. Roe)

Let X be a discrete metric space with a proper Γ -action. TFAE

- X admits a Γ-equivariant coarse embedding into H.
- There exists a conditional negative definite kernel k on X and maps $\rho_{\pm}: \mathbb{R}_+ \to \mathbb{R}_+$ such that $\lim_{t \to \infty} \rho_-(t) = \infty$, satisfying

i)
$$\rho_{-}(d(x,y)) \leq k(x,y) \leq \rho_{+}(d(x,y))$$

ii) $k(x,y) = k(\gamma x, \gamma y)$ for all $\gamma \in \Gamma$.

 For all R > 0, ε > 0 there exists a normalised symmetric kernel k : X × X → ℝ of positive type such that

i)
$$k(x,y) = k(\gamma x, \gamma y)$$
 for all $\gamma \in \Gamma$,
ii) $|k(x,y) - 1| < \varepsilon$ if $d(x,y) \le R$,
ii) $\lim_{S \to \infty} \sup\{|k(x,y)| : d(x,y) \ge S\} = 0$

The case Γ is an amenable group

Let X be a discrete metric space with bounded geometry. Let Γ be a discrete group acting on X properly.

Theorem

If Γ is amenable and X is coarse embeddable in Hilbert space, then X is Γ -equivariant coarse embeddable in Hilbert space.

Idea of proof

For any R > 0, $\delta > 0$, there exists $k : X \times X \to \mathbb{R}$ such that

•
$$|1-k(x,y)| \le \delta$$
 if $d(x,y) \le R$,

• $\lim_{S \to \infty} \sup\{|k(x,y)| : d(x,y) \ge S\} = 0.$

For any $x, y \in X$, define $f^{(x,y)}(g) = k(gx, gy) \in \ell^{\infty}(\Gamma)$. Since Γ is amenable, there is a right invariant mean $m : \ell^{\infty}(\Gamma) \to \mathbb{C}$. Define

$$\tilde{k}(x,y) = m(f^{(x,y)}).$$

Then $\tilde{k}(x,y)$ has the required property.

The case Γ is not an amenable group

Let $\Gamma = SL(2,\mathbb{Z})$. Then $\Gamma \cong \mathbb{Z}_6 *_{\mathbb{Z}_2} \mathbb{Z}_4$, where $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$. Let X be the Bass-Serre tree of Γ . Precisely,

- the vertex sets $V = \Gamma / \mathbb{Z}_6 \cup \Gamma / \mathbb{Z}_4$,
- the edge sets $E = \Gamma / \mathbb{Z}_2$.
- the endpoints of an edge are the vertices that contain it.

Then Γ acts properly on the tree X and X admits a Γ -equivariant coarse embedding into Hilbert space.

Bass-Serre tree

Figure: The Bass-Serre tree of $\mathbb{Z}_6 *_{\mathbb{Z}_2} \mathbb{Z}_4$.

э

< ∃ >

$SL_2(\mathbb{Z})$ is not amenable

Let

$$a = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

Then

$$\mathbb{F}_2 = \langle a, b \rangle.$$

is a free subgroup of $SL_2(\mathbb{Z})$.

э

• • = • • = •

Let X = (V, E) be a tree. Let \mathbb{E} be the set of oriented edges in X. Let $H = \ell^2(\mathbb{E})$ and Γ be a discrete group acting on X properly. Set

$$c(x,y)(e) = \begin{cases} 0 & e \notin [x,y]; \\ +1 & e \in [x,y] \text{ and } e \text{ ponts from } x \text{ to } y; \\ -1 & e \in [x,y] \text{ and } e \text{ ponts from } y \text{ to } x;. \end{cases}$$

Then $c: X \times X \to H$ is a continuous map satisfying

•
$$c(\gamma x, \gamma y) = \gamma c(x, y)$$
 for all $x, y \in X$ and $\gamma \in \Gamma$;

•
$$c(x,z) = c(x,y) + c(y,z)$$
 for all $x, y, z \in X$.

• • = • • = •

Let
$$b(\gamma) = c(\gamma x_0, x_0)$$
. Set
 $\alpha(\gamma)\xi = \gamma \cdot \xi + b(\gamma), \xi \in H, \gamma \in \Gamma$

we get an isometric action α of Γ on H. Fix a base point $x_0 \in X$. Define

$$f: V \to \ell^2(\mathbb{E}), \quad f(x) = c(x_0, x).$$

Then $||f(x) - f(y)|| = \sqrt{2d(x, y)}$ is a equivariant coarse embedding with $\rho_{-}(t) = \sqrt{2t}$.

Let X be a discrete metric space with bounded geometry. Let Γ be an a-T-menable discrete group acting on X properly.

Question

Under what conditions is X $\Gamma\mbox{-equivariant}$ coarse embeddable into Hilbert space?

Alain Valette's construction

Let $(\boldsymbol{X},\boldsymbol{d})$ be a metric space with an proper action of $\Gamma.$ Suppose we have

- a Hilbert space H with a unitary representation π of Γ ,
- a continuous map $c: X \times X \to H$ such that
 - $\ \, \forall x,y \in X, g \in \Gamma: c(gx,gy) = \pi(g)c(x,y) \ \, (\text{equivariance}),$
 - $\forall x, y, z \in X : c(x, y) + c(y, z) = c(x, z)$ (Chasles' relation),
 - there exists a function $\varphi:\mathbb{R}^+\to\mathbb{R}^+$ such that

$$\|c(x,y)\|^2 = \varphi(d(x,y)), \quad x,y \in X$$

(i.e. the norm of c(x,y) depends only on d(x,y)).

Alain Valette's construction

Theorem

If $\varphi(t)$ is non-decreasing and $\lim_{t\to\infty} \varphi(t) = \infty$, Then X is Γ -equivariant coarse embedding into Hilbert space.

- finite dimensional CAT(0) cube complex,
- spaces with measured walls,
- • • .

Main results

Let Γ be discrete group and X a discrete metric space with bounded geometry.

Theorem (Fu and Wang 2016)

If Γ acts properly on X and X is $\Gamma\text{-equivariant coarse embeddable}$ into Hilbert space, then

$$e_*: \lim_{d \to \infty} K_*(C_L^*(P_d(X))^{\Gamma}) \to \lim_{d \to \infty} K_*(C^*(P_d(X))^{\Gamma})$$

is an isomorphism.

Main results

Let Γ be a discrete group and X a discrete metric space with bounded geometry.

Theorem (Fu, Wang and Yu 2017)

If Γ acts properly on X and X is coarse embeddable into Hilbert space, then

$$e_*: \lim_{d \to \infty} K_*(C_L^*(P_d(X))^{\Gamma}) \to \lim_{d \to \infty} K_*(C^*(P_d(X))^{\Gamma})$$

is injective.

• • = • • =

Main results

Definition

Let X be a metric space with bounded geometry and Γ be a countable discrete group. If Γ acts on X properly and for any $\gamma \in \Gamma$, $\sup_{x \in X} d(\gamma x, x) < +\infty$, we say that X has bounded distortion.

Theorem (Fu, Wang and Yu 2018)

Let X be a Γ -space with bounded distortion. If X/Γ and Γ admit coarse embedding into Hilbert spaces, then

$$e_*: \lim_{d \to \infty} K_*(C_L^*(P_d(X))^{\Gamma}) \to \lim_{d \to \infty} K_*(C^*(P_d(X))^{\Gamma})$$

is injective.

Let X be a Γ -space, $\xi : X/\Gamma \to H$ be the coarse embedding and $\pi : X \to X/\Gamma$ be the quotient map. Define the π -localization algebra $C^*_{\pi,L}(X)^{\Gamma}$ to be the norm closure of the set of functions

$$f:[0,\infty)\to \mathbb{C}^*(X)^{\Gamma}$$

, such that

- *f* is uniformly continuous;
- f is bounded under $\|f\| = \sup_{t \in [0,\infty)} \|f(t)\|$, and
- $\sup\{d(\pi(x),\pi(y)):(x,y)\in \operatorname{Supp}(f(t))\}\to 0 \text{ as } t\to\infty.$

Let $\mathcal{S}=C_0(\mathbb{R})$ and V_a be a finite dimensional Euclidean subspace of H. Set

$$\mathcal{C}(V_a) = C_0(V_a, Cliff(V_a^0)), \quad \mathcal{A}(V_a) = \mathcal{S} \hat{\otimes} \mathcal{C}(V_a).$$

If $V_a \subset V_b$, there exists a *-homomorphism $\beta_{ba} : \mathcal{A}(V_a) \to \mathcal{A}(V_b)$.

Proposition

Let
$$\mathcal{A} = \lim_{\to} \mathcal{A}(V_a).$$

伺 ト く ヨ ト く ヨ ト

Proposition

Let Γ be a countable discrete group. TFAE

- Γ is embeddable into Hilbert space;
- \exists compact, Hausdorff, second countable space Y with a right Γ -action which admits a continuous, proper negative type function F on $Y \rtimes \Gamma$.

Let Z be the space of probability measure on Y with w*-topology. The right Γ -action on Y induce a right Γ -action on Z.

 $\tilde{F}(\mu,\gamma)=\int_Y F(y,\gamma)d\mu$ is a continuous proper negative type function on $Z\rtimes\Gamma.$

Hence, $Z \rtimes \Gamma$ admits a continuous, proper and affine isometric action on some Hilbert bundle $(H_{\mu})_{\mu \in Z}$ with $H_{\mu} = H$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Note that $C(Z) \hat{\otimes} \mathcal{A}$ is a Γ -proper C^* -algebra with the Γ -action induced by the proper affine isometric action of $Z \rtimes \Gamma$ on $(H_{\mu})_{\mu \in Z}$. We can show that

$$(\pi_L)_*: \lim_{d \to \infty} K_*(C_L^*(P_d(X), C(Z) \hat{\otimes} \mathcal{A}) \to \lim_{d \to \infty} K_*(C_{\pi,L}^*(P_d(X), C(Z) \hat{\otimes} \mathcal{A})$$

and

$$(e'_{\pi})_* : \lim_{d \to \infty} K_*(C^*_{\pi,L}(P_d(X), \mathcal{A})^{\Gamma}) \to \lim_{d \to \infty} K_*(C^*(P_d(X), \mathcal{A})^{\Gamma})$$

are isomorphisms

From the following commutative diagram

$$\begin{split} \lim_{d \to \infty} K_*(C^*_{\pi,L}(P_d(X))^{\Gamma}) & \xrightarrow{i'_*} \lim_{d \to \infty} K_*(C^*_{\pi,L}(P_d(X), C(Z))^{\Gamma}) \\ & \stackrel{(\pi_L)_*}{\uparrow} & \stackrel{(\beta_{\pi,L})_*}{\downarrow} \\ \lim_{d \to \infty} K_*(C^*_L(P_d(X))^{\Gamma}) & \xrightarrow{\cong} \lim_{d \to \infty} K_*(C^*_{\pi,L}(P_d(X), C(Z) \hat{\otimes} \mathcal{A})^{\Gamma}) \\ & \stackrel{i_*}{\downarrow} \cong & \cong \stackrel{(\pi_L)_*}{\downarrow} \\ \lim_{d \to \infty} K_*(C^*_L(P_d(X), C(Z))^{\Gamma}) & \xrightarrow{(\beta_L)_*}{\cong} \lim_{d \to \infty} K_*(C^*_L(P_d(X), C(Z) \hat{\otimes} \mathcal{A})^{\Gamma}) \end{split}$$

then $(\pi_L)_*$ is injective.

< ∃ >

So e_* is injective.

< ∃ >

э

æ

Thank you!

æ

★ ∃ ► < ∃ ►</p>