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Dirac operators in Lattice Gauge Theory

A naive Dirac operator in lattice gauge theory is given by

D = γµ
(
∇∗µ+∇µ

)
/2,

where ∇µ and ∇∗µ denote backward and forward finite differences:

(∇µψ)(n) = [Un,µψ(n+ µ̂)− ψ(n)] /a
(∇∗µψ)(n) = [ψ(n)− Un,µψ(n− µ̂)] /a

with a the lattice spacing (Here D is skew-adjoint).
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But it encountered a problem of fermion doubling, extra freedom

of fermions that appears in lattice gauge theory. In order to overcome

this point Wilson proposed the Wilson fermion operator :

DW = D+W,

where W = −
a

2
(∇∗µ∇µ) ≥ 0. But DW has another difficulty, namely it

breaks the chirality; ΓDW +DWΓ ̸= 0. Then the third Dirac operator,

the overlap operator, was found by Neuberger ,which is given by

D =
1

a
(1 + U)

with U =
aDW − 1

|aDW − 1|
. It still breaks the chirality but satisfies the

Ginsparg-Wilson relation, which is a perturbation of the chirality.
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The Ginsparg-Wilson relation
Γ: an involution, namely Γ∗ = Γ, Γ2 = 1

An operator D satisfies the Ginsparg-Wilson relation if

DΓ+ ΓD = aDΓD

with a ∈ R. At a = 0, it means that D anti-commutes with Γ.

Proposition 1 Let U be a unitary operator with ΓUΓ = U∗. Set

D =
1

a
(1± U). Then D satisfies the Ginsparg-Wilson relation.

In fact,

DΓ+ ΓD = (1± U)Γ/a+Γ(1± U)/a = (2Γ± UΓ± ΓU)/a

is equal to

aDΓD = (1± U)Γ(1± U)/a = (Γ± UΓ± ΓU + UΓU)/a

since UΓU = Γ.

Remark. spec
(
1

a
(1± U)

)
tends to the imaginary axis iR as a→ 0.
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A universal Ginsparg-Wilson algebra

Given an involution Γ and a unitary U with ΓUΓ = U∗.

Set Γ′ = ΓU , which gives another involution:

(Γ′)∗ = U∗Γ = ΓUΓU = 1, (Γ′)2 = ΓUΓU = U∗U = 1

Conversely, given two involutions Γ and Γ′, we set U = ΓΓ′. Then U

is a unitary with ΓUΓ = U∗. This argument implies:

Proposition 2 Let S1 be the unit circle in C and ϵ ∈ Z2 an involution

that acts on S1 by the complex conjugation: ϵ(z) = z̄ (z ∈ S1). The

resulting crossed product C(S1) ⋊ Z2 is isomorphic to the universal

C∗-algebra generated by two involutions.

Definition 1 The crossed product C(S1)⋊Z2 called a universal

Ginsparg-Wilson algebra and denoted by C∗GW .
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The K-theory of C∗GW
Let x ∈ R be the Cayley coordinate for the unit circle S1 ⊂ C:

eiθ =
x− i
x+ i

∈ S1.

Thus R is identified with S1 \ {1} and there is a short exact sequence:

0 −→ Co(R) ⋊ Z2 −→ C∗GW
π−→ C∗Z2 −→ 0

where π is the evaluation at z = 1 ∈ S1. Then one has the 6-term

exact sequence:

Z −→ Z3 −→ Z2x y
0 ←− 0 ←− 0

Thus the K-group of C∗GW are:

K0(C
∗
GW ) ∼= Z3, K1(C

∗
GW ) ∼= 0.
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Proposition 3 Define projections in C∗GW such as

p = (1+ ϵ)/2, p′ = (1+ ϵeiθ)/2.

K0(C
∗
GW ) admits a basis given by [p]− [p′], [p]− [1− p′], [1], where

[p]− [p′] ∈ K0(Co(R) ⋊ Z2)
∼= Z,

π∗([p]− [1− p′]), π∗[1] ∈ K0(C
∗Z2)

∼= Z2

generate those groups. Let ex = (x + ϵ)−1p(x + ϵ) be the graph

projection. Then the (index) class

[ex]− [1− p] ∈ K0(Co(R) ⋊ Z2)

coincides with [p]− [p′].

Definition 2 Set

Ind(U,−1) := [p]− [p′], Ind(U,+1) := [p]− [1− p′].

We call Ind(U,−1) a (universal) index class and Ind(U,+1) a

(universal) doubler class. A life is not simple but the K-theory is.

9



The Ginsparg-Wilson Index theorem

Given an involution Γ and a unitary U with ΓUΓ = U∗ on a Hilbert

space H, there exists a ∗-homomorphism

ρ : C∗GW → L(H)

to the bounded operators on H in such a way that ρ(eiθ) = U, ρ(ϵ) = Γ.

Associated to Γ and U , the Ginsparg-Wilson index can be defined:

ρ∗(Ind(U,−1)) is called the index class and ρ∗(Ind(U,+1)) the doubler

class, denoted often suppressing ρ∗.

Recall Γ′ = ΓU is an involution. Define selfadjoint operators such as

H+ = (Γ+ Γ′)/2, H− = (Γ− Γ′)/2.

Let V (U,±1) be the eigenspace of U of eigenvalue ±1, respectively.

One has

V (U,±1) = {ξ|Γξ = ±Γ′ξ} = kerH∓

since 1± U = Γ(Γ± Γ′).
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Theorem 4 (The Ginsparg-Wilson index theorem) Suppose

that the spectrum ±1 ∈ spec(U) are isolated and the correspond-

ing projections are finite. Then one has ρ∗ Ind(U,±1) ∈ K0(K)
with K the ideal of compact operators and

Tr(ρ∗ Ind(U,±1)) = Tr(Γ|V (U,±1)) = Tr(Γ|kerH∓)

Moreover, if H± is traceable, then

Tr(ρ∗ Ind(U,±1)) = Tr(H±/2).

The second identity is easily follows from

ρ∗(p− p′) = (1+ Γ)/2− (1 + Γ′)/2 = H−
ρ∗(p− (1− p′)) = (1+ Γ)/2− (1− Γ′)/2 = H+

Theorem justifies the notation Ind(U,±1) since they are associated to

the spectral projection of U corresponding to ±1. Also note that H±/2

are not projections in general, but the trace turned out to be integers.



Examples of the Ginsparg-Wilson index

Example 1 Let D be a Dirac operator on a closed manifold and Γ

the grading operator such as ΓD + DΓ = 0. The Cayley transform

U = (D − i)(D+ i)−1 satisfies

ΓUΓ = Γ
D − i
D+ i

Γ =
D+ i

D − i
= U∗.

Then one has

Uξ = −ξ ⇐⇒ (D − i)ξ = −(D+ i)ξ ⇐⇒ ξ ∈ kerD

and thus

Tr(Ind(U,−1)) = Tr(Γ|V (U,−1)) = Tr(Γ|kerD) = Ind(D+).

On the other hand, one has V (U,+1) = 0 since (D − i)ξ = (D + i)ξ

if and only if ξ = 0. Thus Tr(Γ|V (U,+1)) = 0 although the class

Ind(U,+1) does not belong to K0(K). Replacing D by f(D) with f a

tempered function of x/|x| on R, one has 0 = Ind(U,+1) ∈ K0(K).



Example 2 (Finite dimensional case) Set

Γ =

(
1n 0
0 1m

)
, Γ′ =

(
1k 0
0 1l

)
with n+m = k+ l. Then one has

P = (1+Γ)/2 =

(
1n 0
0 0

)
, P ′ = (1+Γ′)/2 =

(
1k 0
0 0

)
, 1−P ′ =

(
0 0
0 1l

)
and thus

Tr(Ind(U,−1)) = Tr(P − P ′) = n− k
Tr(Ind(U,+1)) = Tr(P − (1− P ′)) = n− l.

Note that the Fredholm index of F : V → W does not depend on the

choice of F if V is finite dimensionl. However, we can get a nontrivial

index class Ind(U,−1) with the doubler class Ind(U,+1) trivial (take

n=ℓ) even if dimV <∞.
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Example 3 As in Example 1, let D be a selfadjoint elliptic operator on

a closed manifold and take Γ a grading operator such as ΓD+DΓ = 0.

Also take a selfadjoint operator A such that DA = AD and ΓA = AΓ.

Set

U =


D − iA
D+ iA

on (kerD ∩ kerA)⊥

1 on kerD ∩ kerA

One has

Γ
D − iA
D+ iA

Γ =
D+ iA

D − iA
, Γ1Γ = 1

and thus ΓUΓ = U∗. It then follows that

Tr(Ind(U,−1)) = Tr(Γ|kerD) = Ind(D+)

Tr(Ind(U,+1)) = Tr(Γ| kerD ∩ kerA) = Tr(Γ|ker(D+ iA))

Since D+iA dose not anti-commute with Γ, the second index is not an

ordinary index for an odd operator. In fact, we can obtain a nontrivial

doubler class for suitable D and A. The evil twin is not bad at all. This is

generalized to the case of Dolbeault index theorem on SU(2).
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A Fuzzy sphere
S2 ⊂ R3: the standard sphere defined by x21 + x22 + x23 = 1

A(S2)= the algebra of polynomials in xi restricted to S2

G = SU(2) naturally acts on S2 (SO(3)-action)

A(S2) splits into the direct sum of irreducible representations of G:

A(S2) =
∞⊕
l=0

Vl

where Vl is the representation space with highest weight l ∈ N ∪ {0}, a

unique irreducible representation of SU(2) with dimV = 2l+ 1 or the

eigenspace of the Laplacian ∆ on S2 with eigenvalue l(l+1).

Definition 3 A fuzzy sphere is the C∗-algebra AN = End(Vl) with

N = 2l, where it decomposes into irreducible G-representations:

AN = End(Vl) = Vl ⊗ Vl =
2l⊕
k=0

Vk.

One has AN → A(S2) as N = 2l→∞ “naively”.
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The fuzzy Dirac operator

Li ∈ End(Vl) (i = 1,2,3): standard self-adjoint infinitesimal generators

of SU(2)-action, namely Li are the angular momentum operators such

as [Li, Lj] =
√
−1ϵijkLk. They satisfy

L2
1 + L2

2 + L2
3 = l(l+1)1V

Set Xi = Li/
√
l(l+1) ≑ Li/l. One has

X2
1 +X2

2 +X2
3 = 1, [Xi, Xj] =

√
−1√

l(l+1)
ϵijkXk −→ 0

as l→∞. Moreover, with ℏ = 1/
√
l(l+1), one has

√
−1
ℏ

[Xi, Xj] −→ {xi, xj} : the Poisson bracket on S2

as ℏ → 0. Thus noncommutative coordinate Xi converges to ordinary

coortinate xi as l → ∞ in a suitable sense (Rieffel, D’Andorea-Lizzi-

Várilly, ... ).
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σi ∈ End(V1/2)
∼=M2C (i = 1,2,3):the Pauli matrix, namely

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Define operators on the fuzzy spinors AN ⊗ V1/2 = End(Vl)⊗ V1/2 by

D1 = 1/2+
∑
i

L
(l)
i ⊗ σi, D2 = 1/2−

∑
i

L
(r)
i ⊗ σi

with L
(l)
i X = LiX and L

(r)
i X = XLi for X ∈ End(Vl)⊗ V1/2. Set

Γ1 = D1/|D1|, Γ2 = D2/|D2|,

which are involutions. One has

Γ1 +Γ2

2
=

1

2l+1

(
1+

∑
[Li, X]⊗ σi

)
=

/D

2l+1
.

Here /D is the (unbounded) Dirac operator on S2, which preserves the

fuzzy spinors AN ⊗ V1/2 ⊂ A(S2)⊗ V1/2.
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In the commutative limit (N = 2l→∞), one has

H+ =
Γ1 +Γ2

2
=

1

2l+1

(
1+

∑
[Li, X]⊗ σi

)
→

/D

| /D|

H− =
Γ1 − Γ2

2
=

1

2l+1

∑(
L
(l)
i + L

(r)
i

)
⊗ σi →

∑
xi ⊗ σi = ϵ

since Xi ≑ Li/l “converges” to xi, where ϵ is the grading operator on

the spinor bundle on S2. Consider the GW index:

Ind(U,±1) = Tr(H±|kerH∓) = Tr(H±)

Theorem 5 (The index theorem on fuzzy sphere)

Ind(U,−1) = Tr(H−) = 0, Ind(U,+1) = Tr(H+) = 4l+2

Remark. 1) In the commutative limit (l → ∞), one has

Tr(H−|kerH+) → Tr(ϵ| ker /D) = Ind( /D+) = 0, thus Ind(U,−1) con-

tains no doubler fermions.

2) In a similar way we can define the Dirac operator on Vl⊗Vm⊗V1/2,
where one has Ind(U,−1) = 2m− 2l, Ind(U,+1) = 2(l+m) + 2.
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A GW index theorem on SU(2)
SU(2) ∼= S3: the 3-dimensional sphere

E = C∞(S3)⊗ C2: the space of spinors with Γ =
[
1 0
0 −1

]
∈ End(C2)

X,Y, Z:left-invariant differential operators on S3 corresponding to a

basis of Lie algebra; Do not confuse End(C2) with Lie(SU(2)).

X =

(
0 1
−1 0

)
, Y =

(
0 i
i 0

)
, Z =

(
i 0
0 −i

)
∈ Lie(SU(2)).

A Dolbeault operator lifted from S2 is defined by

D =

[
0 ∂̄∗

∂̄ 0

]
=

[
0 −X + iY

X + iY 0

]
on E.

Since [Z,X] = 2Y, [Z, Y ] = −2X, the Dolbeault operator D commutes

with the action by T =
[
Z 0
0 Z +2i

]
.
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Set U =
D − iAk
D+ iAk

with Ak = −iT − k (k ∈ Z). One has ΓUΓ = U∗ as is

proved in Example 3.

Theorem 6 (A GW index theorem on SU(2)) The doubler

class Ind(U,+1) belongs to K0(K) although the index class

Ind(U,−1) not. One has

Ind(U,+1) = Tr(Γ|ker(D+ iAk)) = Ind(∂̄+ ⊗H(k)).

Here H(k) denotes the ample line bundle on S2 of degree k,

namely the first Chern number c1(H(k))[S2] = k and

∂̄+ ⊗ 1H(k) : Ω
0,0(S2, H(k))→ Ω0,1(S2, H(k))

is the Dolbeault operator coupled with H(k).
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Thank you for your attention
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