Fuzzy sphere and

the Ginsparg-Wilson index

Hitoshi MORIYOSHI

Graduate School of Mathematics, Nagoya University, JAPAN

Tianyuan Mathematical Center, 天元数学西南中心,

Chengdu, China, May 15, 2018

Based on a joint work with

T. Natsume (Ritsumeikan University)

Plan of Talk

- Dirac operators in Lattice Gauge Theory
- The Ginsparg-Wilson relation
- A universal Ginsparg-Wilson algebra
- The *K*-theory of C^*_{GW}
- The Ginsparg-Wilson Index
- Fuzzy sphere and a fuzzy Dirac operator
- A GW index theorem on SU(2)

Dirac operators in Lattice Gauge Theory

A naive Dirac operator in lattice gauge theory is given by

$$D = \gamma_{\mu} \left(\nabla_{\mu}^{*} + \nabla_{\mu} \right) / 2$$

where ∇_{μ} and ∇_{μ}^{*} denote backward and forward finite differences:

$$(\nabla_{\mu}\psi)(n) = [U_{n,\mu}\psi(n+\hat{\mu}) - \psi(n)]/a$$
$$(\nabla^{*}_{\mu}\psi)(n) = [\psi(n) - U_{n,\mu}\psi(n-\hat{\mu})]/a$$

with a the lattice spacing (Here D is skew-adjoint).

But it encountered a problem of **fermion doubling**, extra freedom of fermions that appears in lattice gauge theory. In order to overcome this point Wilson proposed the **Wilson fermion operator** :

$$D_W = D + W,$$

where $W = -\frac{a}{2}(\nabla^*_{\mu}\nabla_{\mu}) \ge 0$. But D_W has another difficulty, namely it breaks the chirality; $\Gamma D_W + D_W \Gamma \ne 0$. Then the third Dirac operator, the **overlap operator**, was found by Neuberger ,which is given by

$$D = \frac{1}{a} \left(1 + U \right)$$

with $U = \frac{aD_W - 1}{|aD_W - 1|}$. It still breaks the chirality but satisfies the Ginsparg-Wilson relation, which is a perturbation of the chirality.

The Ginsparg-Wilson relation

 Γ : an involution, namely $\Gamma^* = \Gamma$, $\Gamma^2 = 1$

An operator D satisfies the Ginsparg-Wilson relation if

 $D\Gamma + \Gamma D = aD\Gamma D$

with $a \in \mathbb{R}$. At a = 0, it means that D anti-commutes with Γ .

Proposition 1 Let U be a unitary operator with $\Gamma U\Gamma = U^*$. Set $D = \frac{1}{a}(1 \pm U)$. Then D satisfies the Ginsparg-Wilson relation.

In fact,

$$D\Gamma + \Gamma D = (1 \pm U)\Gamma/a + \Gamma(1 \pm U)/a = (2\Gamma \pm U\Gamma \pm \Gamma U)/a$$

is equal to

 $aD\Gamma D = (1 \pm U)\Gamma(1 \pm U)/a = (\Gamma \pm U\Gamma \pm \Gamma U + U\Gamma U)/a$

since $U\Gamma U = \Gamma$. **Remark.** spec $\left(\frac{1}{a}(1 \pm U)\right)$ tends to the imaginary axis $i\mathbb{R}$ as $a \to 0$.

A universal Ginsparg-Wilson algebra

Given an involution Γ and a unitary U with $\Gamma U\Gamma = U^*$. Set $\Gamma' = \Gamma U$, which gives another involution:

$$(\Gamma')^* = U^*\Gamma = \Gamma U \Gamma U = 1, \qquad (\Gamma')^2 = \Gamma U \Gamma U = U^*U = 1$$

Conversely, given two involutions Γ and Γ' , we set $U = \Gamma\Gamma'$. Then U is a unitary with $\Gamma U\Gamma = U^*$. This argument implies:

Proposition 2 Let S^1 be the unit circle in \mathbb{C} and $\epsilon \in \mathbb{Z}_2$ an involution that acts on S^1 by the complex conjugation: $\epsilon(z) = \overline{z}$ ($z \in S^1$). The resulting crossed product $C(S^1) \rtimes \mathbb{Z}_2$ is isomorphic to the universal C^* -algebra generated by two involutions.

Definition 1 The crossed product $C(S^1) \rtimes \mathbb{Z}_2$ called a universal **Ginsparg-Wilson algebra** and denoted by C^*_{GW} .

The *K*-theory of C^*_{GW}

Let $x \in \mathbb{R}$ be the Cayley coordinate for the unit circle $S^1 \subset \mathbb{C}$:

$$e^{i\theta} = \frac{x-i}{x+i} \in S^1.$$

Thus \mathbb{R} is identified with $S^1 \setminus \{1\}$ and there is a short exact sequence:

$$0 \longrightarrow C_o(\mathbb{R}) \rtimes \mathbb{Z}_2 \longrightarrow C^*_{GW} \xrightarrow{\pi} C^* \mathbb{Z}_2 \longrightarrow 0$$

where π is the evaluation at $z = 1 \in S^1$. Then one has the 6-term exact sequence:

Thus the K-group of C_{GW}^* are:

$$K_0(C^*_{GW}) \cong \mathbb{Z}^3, \qquad K_1(C^*_{GW}) \cong 0.$$

Proposition 3 Define projections in C^*_{GW} such as

 $p = (1 + \epsilon)/2,$ $p' = (1 + \epsilon e^{i\theta})/2.$

 $K_0(C^*_{GW})$ admits a basis given by [p] - [p'], [p] - [1 - p'], [1], where

$$[p] - [p'] \in K_0(C_o(\mathbb{R}) \rtimes \mathbb{Z}_2) \cong \mathbb{Z},$$

$$\pi_*([p] - [1 - p']), \pi_*[1] \in K_0(C^*\mathbb{Z}_2) \cong \mathbb{Z}^2$$

generate those groups. Let $e_x = (x + \epsilon)^{-1}p(x + \epsilon)$ be the graph projection. Then the (index) class

$$[e_x] - [1 - p] \in K_0(C_o(\mathbb{R}) \rtimes \mathbb{Z}_2)$$

coincides with [p] - [p'].

Definition 2 Set

 $\operatorname{Ind}(U,-1) := [p] - [p'], \quad \operatorname{Ind}(U,+1) := [p] - [1-p'].$

We call Ind(U, -1) a (universal) index class and Ind(U, +1) a (universal) doubler class. A life is not simple but the K-theory is.

The Ginsparg-Wilson Index theorem

Given an involution Γ and a unitary U with $\Gamma U\Gamma = U^*$ on a Hilbert space \mathcal{H} , there exists a *-homomorphism

$$\rho: C^*_{GW} \to \mathcal{L}(\mathcal{H})$$

to the bounded operators on \mathcal{H} in such a way that $\rho(e^{i\theta}) = U$, $\rho(\epsilon) = \Gamma$. Associated to Γ and U, the **Ginsparg-Wilson index** can be defined: $\rho_*(\operatorname{Ind}(U, -1))$ is called the **index class** and $\rho_*(\operatorname{Ind}(U, +1))$ the **doubler class**, denoted often suppressing ρ_* .

Recall $\Gamma' = \Gamma U$ is an involution. Define selfadjoint operators such as

$$H_{+} = (\Gamma + \Gamma')/2, \qquad H_{-} = (\Gamma - \Gamma')/2.$$

Let $V(U, \pm 1)$ be the eigenspace of U of eigenvalue ± 1 , respectively. One has

$$V(U,\pm 1) = \{\xi | \Gamma \xi = \pm \Gamma' \xi\} = \ker H_{\mp}$$

since $1 \pm U = \Gamma(\Gamma \pm \Gamma')$.

Theorem 4 (The Ginsparg-Wilson index theorem) Suppose that the spectrum $\pm 1 \in \text{spec}(U)$ are isolated and the corresponding projections are finite. Then one has $\rho_* \text{Ind}(U, \pm 1) \in K_0(\mathcal{K})$ with \mathcal{K} the ideal of compact operators and

 $\operatorname{Tr}(\rho_*\operatorname{Ind}(U,\pm 1)) = \operatorname{Tr}(\Gamma|V(U,\pm 1)) = \operatorname{Tr}(\Gamma|\ker H_{\mp})$

Moreover, if H_{\pm} is traceable, then

 $\operatorname{Tr}(\rho_*\operatorname{Ind}(U,\pm 1)) = \operatorname{Tr}(H_{\pm}/2).$

The second identity is easily follows from

$$\rho_*(p - p') = (1 + \Gamma)/2 - (1 + \Gamma')/2 = H_-$$

$$\rho_*(p - (1 - p')) = (1 + \Gamma)/2 - (1 - \Gamma')/2 = H_+$$

Theorem justifies the notation $Ind(U, \pm 1)$ since they are associated to the spectral projection of U corresponding to ± 1 . Also note that $H_{\pm}/2$ are not projections in general, but the trace turned out to be integers.

Examples of the Ginsparg-Wilson index

Example 1 Let D be a Dirac operator on a closed manifold and Γ the grading operator such as $\Gamma D + D\Gamma = 0$. The Cayley transform $U = (D - i)(D + i)^{-1}$ satisfies

$$^{-}U\Gamma = \Gamma \frac{D-i}{D+i}\Gamma = \frac{D+i}{D-i} = U^{*}.$$

Then one has

$$U\xi = -\xi \iff (D-i)\xi = -(D+i)\xi \iff \xi \in \ker D$$

and thus

$$\mathsf{Tr}(\mathsf{Ind}(U,-1)) = \mathsf{Tr}(\Gamma|V(U,-1)) = \mathsf{Tr}(\Gamma|\ker D) = \mathsf{Ind}(D^+).$$

On the other hand, one has V(U, +1) = 0 since $(D - i)\xi = (D + i)\xi$ if and only if $\xi = 0$. Thus $Tr(\Gamma|V(U, +1)) = 0$ although the class Ind(U, +1) does not belong to $K_0(\mathcal{K})$. Replacing D by f(D) with f a tempered function of x/|x| on \mathbb{R} , one has $0 = Ind(U, +1) \in K_0(\mathcal{K})$. Example 2 (Finite dimensional case) Set

$$\Gamma = \begin{pmatrix} \mathbf{1}_n & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_m \end{pmatrix}, \qquad \Gamma' = \begin{pmatrix} \mathbf{1}_k & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_l \end{pmatrix}$$

with n + m = k + l. Then one has

$$P = (1+\Gamma)/2 = \begin{pmatrix} 1_n & 0\\ 0 & 0 \end{pmatrix}, \quad P' = (1+\Gamma')/2 = \begin{pmatrix} 1_k & 0\\ 0 & 0 \end{pmatrix}, \quad 1-P' = \begin{pmatrix} 0 & 0\\ 0 & 1_l \end{pmatrix}$$

and thus

$$Tr(Ind(U, -1)) = Tr(P - P') = n - k$$

 $Tr(Ind(U, +1)) = Tr(P - (1 - P')) = n - l$

Note that the Fredholm index of $F: V \to W$ does not depend on the choice of F if V is finite dimensionl. However, we can get a nontrivial index class Ind(U, -1) with the doubler class Ind(U, +1) trivial (take $n=\ell$) even if dim $V < \infty$.

Example 3 As in Example 1, let D be a selfadjoint elliptic operator on a closed manifold and take Γ a grading operator such as $\Gamma D + D\Gamma = 0$. Also take a selfadjoint operator A such that DA = AD and $\Gamma A = A\Gamma$. Set

$$U = \begin{cases} \frac{D - iA}{D + iA} & on \ (\ker D \cap \ker A)^{\perp} \\ 1 & on \ \ker D \cap \ker A \end{cases}$$

One has

$$-\frac{D-iA}{D+iA}\Gamma = \frac{D+iA}{D-iA}, \qquad \Gamma \Gamma \Gamma = 1$$

and thus $\Gamma U \Gamma = U^*$. It then follows that

$$Tr(Ind(U, -1)) = Tr(\Gamma | \ker D) = Ind(D^+)$$
$$Tr(Ind(U, +1)) = Tr(\Gamma | \ker D \cap \ker A) = Tr(\Gamma | \ker(D + iA))$$

Since D+iA dose not anti-commute with Γ , the second index is not an ordinary index for an odd operator. In fact, we can obtain a nontrivial doubler class for suitable D and A. The evil twin is not bad at all. This is generalized to the case of Dolbeault index theorem on SU(2).

A Fuzzy sphere

 $S^2 \subset \mathbb{R}^3$: the standard sphere defined by $x_1^2 + x_2^2 + x_3^2 = 1$ $\mathcal{A}(S^2)$ = the algebra of polynomials in x_i restricted to S^2 G = SU(2) naturally acts on S^2 (SO(3)-action) $\mathcal{A}(S^2)$ splits into the direct sum of irreducible representations of G:

$$\mathcal{A}(S^2) = \bigoplus_{l=0}^{\infty} V_l$$

where V_l is the representation space with highest weight $l \in \mathbb{N} \cup \{0\}$, a unique irreducible representation of SU(2) with dim V = 2l + 1 or the eigenspace of the Laplacian Δ on S^2 with eigenvalue l(l + 1).

Definition 3 A fuzzy sphere is the C^* -algebra $A_N = \text{End}(V_l)$ with N = 2l, where it decomposes into irreducible G-representations:

$$\mathcal{A}_N = \operatorname{End}(V_l) = V_l \otimes V_l = \bigoplus_{k=0}^{2l} V_k.$$

One has $\mathcal{A}_N \to \mathcal{A}(S^2)$ as $N = 2l \to \infty$ "naively".

The fuzzy Dirac operator

 $L_i \in \text{End}(V_l)$ (i = 1, 2, 3): standard self-adjoint infinitesimal generators of SU(2)-action, namely L_i are the angular momentum operators such as $[L_i, L_j] = \sqrt{-1}\epsilon_{ijk}L_k$. They satisfy

$$L_1^2 + L_2^2 + L_3^2 = l(l+1)\mathbf{1}_V$$

Set $X_i = L_i / \sqrt{l(l+1)} \doteqdot L_i / l$. One has

$$X_1^2 + X_2^2 + X_3^2 = 1, \qquad [X_i, X_j] = \frac{\sqrt{-1}}{\sqrt{l(l+1)}} \epsilon_{ijk} X_k \longrightarrow 0$$

as $l \to \infty$. Moreover, with $\hbar = 1/\sqrt{l(l+1)}$, one has

$$\frac{\sqrt{-1}}{\hbar}[X_i, X_j] \longrightarrow \{x_i, x_j\} : \text{the Poisson bracket on } S^2$$

as $\hbar \to 0$. Thus noncommutative coordinate X_i converges to ordinary coortinate x_i as $l \to \infty$ in a suitable sense (Rieffel, D'Andorea-Lizzi-Várilly, ...).

 $\sigma_i \in \operatorname{End}(V_{1/2}) \cong M_2\mathbb{C} \ (i = 1, 2, 3)$:the Pauli matrix, namely

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Define operators on the fuzzy spinors $\mathcal{A}_N \otimes V_{1/2} = \text{End}(V_l) \otimes V_{1/2}$ by

$$D_1 = 1/2 + \sum_i L_i^{(l)} \otimes \sigma_i, \qquad D_2 = 1/2 - \sum_i L_i^{(r)} \otimes \sigma_i$$

$$\stackrel{(l)}{\longrightarrow} X = L_i X \text{ and } L_i^{(r)} X = XL_i \text{ for } X \in \text{End}(V_i) \otimes V_i \text{ (a. 5)}$$

with $L_i^{(l)}X = L_iX$ and $L_i^{(r)}X = XL_i$ for $X \in \text{End}(V_l) \otimes V_{1/2}$. Set

$$\Gamma_1 = D_1/|D_1|, \qquad \Gamma_2 = D_2/|D_2|,$$

which are involutions. One has

$$\frac{\Gamma_1 + \Gamma_2}{2} = \frac{1}{2l+1} \left(1 + \sum [L_i, X] \otimes \sigma_i \right) = \frac{\not D}{2l+1}.$$

Here D is the (unbounded) Dirac operator on S^2 , which preserves the fuzzy spinors $\mathcal{A}_N \otimes V_{1/2} \subset \mathcal{A}(S^2) \otimes V_{1/2}$.

In the commutative limit $(N = 2l \rightarrow \infty)$, one has

$$H_{+} = \frac{\Gamma_{1} + \Gamma_{2}}{2} = \frac{1}{2l+1} \left(1 + \sum_{i=1}^{l} [L_{i}, X] \otimes \sigma_{i} \right) \rightarrow \frac{\not{D}}{|\not{D}|}$$
$$H_{-} = \frac{\Gamma_{1} - \Gamma_{2}}{2} = \frac{1}{2l+1} \sum_{i=1}^{l} \left(L_{i}^{(l)} + L_{i}^{(r)} \right) \otimes \sigma_{i} \rightarrow \sum_{i=1}^{l} x_{i} \otimes \sigma_{i} = \epsilon$$

since $X_i \doteq L_i/l$ "converges" to x_i , where ϵ is the grading operator on the spinor bundle on S^2 . Consider the GW index:

$$\operatorname{Ind}(U,\pm 1) = \operatorname{Tr}(H_{\pm}|\ker H_{\mp}) = \operatorname{Tr}(H_{\pm})$$

Theorem 5 (The index theorem on fuzzy sphere)

$$Ind(U,-1) = Tr(H_{-}) = 0$$
, $Ind(U,+1) = Tr(H_{+}) = 4l + 2$

Remark. 1) In the commutative limit $(l \to \infty)$, one has $Tr(H_{-} | \ker H_{+}) \to Tr(\epsilon | \ker D) = Ind(D^{+}) = 0$, thus Ind(U, -1) contains no doubler fermions.

2) In a similar way we can define the Dirac operator on $V_l \otimes V_m \otimes V_{1/2}$, where one has Ind(U, -1) = 2m - 2l, Ind(U, +1) = 2(l + m) + 2.

A GW index theorem on SU(2)

 $SU(2) \cong S^3$: the 3-dimensional sphere $\mathcal{E} = C^{\infty}(S^3) \otimes \mathbb{C}^2$: the space of spinors with $\Gamma = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in \operatorname{End}(\mathbb{C}^2)$ X, Y, Z:left-invariant differential operators on S^3 corresponding to a basis of Lie algebra; Do not confuse $\operatorname{End}(\mathbb{C}^2)$ with $\operatorname{Lie}(SU(2))$.

$$X = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \in \operatorname{Lie}(SU(2)).$$

A Dolbeault operator lifted from S^2 is defined by

$$D = \begin{bmatrix} 0 & \bar{\partial}^* \\ \bar{\partial} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -X + iY \\ X + iY & 0 \end{bmatrix} \text{ on } \mathcal{E}.$$

Since [Z, X] = 2Y, [Z, Y] = -2X, the Dolbeault operator D commutes with the action by $T = \begin{bmatrix} Z & 0 \\ 0 & Z+2i \end{bmatrix}$.

Set $U = \frac{D - iA_k}{D + iA_k}$ with $A_k = -iT - k$ ($k \in \mathbb{Z}$). One has $\Gamma U\Gamma = U^*$ as is proved in Example 3.

Theorem 6 (A GW index theorem on SU(2)) The doubler class Ind(U, +1) belongs to $K_0(\mathcal{K})$ although the index class Ind(U, -1) not. One has

 $Ind(U,+1) = Tr(\Gamma | \ker(D + iA_k)) = Ind(\overline{\partial}^+ \otimes H(k)).$

Here H(k) denotes the ample line bundle on S^2 of degree k, namely the first Chern number $c_1(H(k))[S^2] = k$ and

 $\bar{\partial}^+ \otimes \mathbb{1}_{H(k)} : \Omega^{0,0}(S^2, H(k)) \to \Omega^{0,1}(S^2, H(k))$

is the Dolbeault operator coupled with H(k).

Thank you for your attention