Persistence approximation property for maximal Roe algebras and applications

Qin Wang

Research Center for Operator Algebras East China Normal University

Workshop on Noncommutative Geometry and Representation Theory Chengdu, May 14-18, 2018

- 2 Persistence approximation property
- 3 An application of quantitative K-theory

Operator propagation

- Let X be a proper metric space(i.e. closed balls are compact) and let $\pi : C_0(X) \to \mathcal{L}(\mathcal{H})$ be a representation of $C_0(X)$ on a Hilbert space \mathcal{H} .
- Example: $\mathcal{H} = L^2(X,\mu)$ for μ Borelian measure on X and π the pointwise multiplication.

Definition

- If T is an operator of $\mathcal{L}(\mathcal{H})$, then $\operatorname{Supp} T$ is the complementary of the open subset of $X \times X$ $\{(x, y) \in X \times X \text{ such that there exists } f \text{ and } g \text{ such that } f(x) \neq 0, g(y) \neq 0 \text{ and } \pi(f) \cdot T \cdot \pi(g) = 0\}$
- T has propagation less than r if $d(x, y) \leq r$ for all $(x, y) \in \text{Supp}T$.

۲

Propagation and indices

- Let D be an elliptic differential operator on a compact manifold M.
- Let Q be a parametrix for D.
- Then $S_0 := Id QD$ and $S_1 := Id DQ$ are smooth kernel operators on $M \times M$:

$$P_D = \begin{pmatrix} S_0^2 & S_0(Id + S_0)Q\\ S_1D & Id - S_1^2 \end{pmatrix}$$
(1.1)

is an idempotent and we can choose Q such that P_D has arbitrary small propagation.

 $\bullet \ D$ is a Fredholm operator and

Ind
$$(D) = [P_D] - \left[\begin{pmatrix} 0 & 0 \\ 0 & Id \end{pmatrix} \right] \in K_0(K(L^2(M))) \cong \mathbb{Z}$$

$$(1.2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• How can we keep track of the propagation and have homotopy invariance ?

Quasi-projection

Definition

If X is a proper metric space and $\pi:C_0(X)\to L(H)$ is a representation of $C_0(X)$ on a Hilbert space H, let $0<\epsilon<\frac{1}{4}$ (control) and r>0 (propagation). Then $q\in\mathcal{L}(\mathcal{H})$ is an $\epsilon\text{-}r\text{-}\mathrm{projection}$ if $q=q^*$, $\|q-q^2\|<\epsilon$ and q has propagation less than r.

- If q is an ϵ -r-projection, then its spectrum has a gap around $\frac{1}{2}$.
- Hence there exists $k_0: \sigma(q) \to \{0, 1\}$ continuous and such that $k_0(t) = 0$ if $t < \frac{1}{2}$ and $k_0(t) = 1$ if $t > \frac{1}{2}$.
- By continuous functional calculus, $k_0(q)$ is a projection such that $||k_0(q) q|| \le 2\epsilon$.

Quasi-projections and indices

• Let D be a differential elliptic operator on a manifold, let Q be a parametrix. Set $S_0 := Id - QD$ and $S_1 := Id - DQ$ and

$$P_D = \begin{pmatrix} S_0^2 & S_0(Id + S_0)Q\\ S_1D & Id - S_1^2 \end{pmatrix}$$
(1.3)

Then

 $((2P_D^*-1)(2P_D-1)+1)^{\frac{1}{2}}P_D((2P_D^*-1)(2P_D-1)+1)^{-\frac{1}{2}}$ is a projection conjugated to the idempotent P_D ;

• Choosing $Q = Q_{\epsilon,r}$ with propagation small enough and approximating $((2P_D^* - 1)(2P_D - 1) + 1)^{\frac{1}{2}}P_D((2P_D^* - 1)(2P_D - 1) + 1)^{-\frac{1}{2}}$ by a power series, we can for all $0 < \epsilon < \frac{1}{4}$ and r > 0, construct a ϵ -r-projection $q_D^{\epsilon,r}$ such that D such that

Ind
$$(D) = [k_0(q_D^{\epsilon,r})] - \left[\begin{pmatrix} 0 & 0 \\ 0 & Id \end{pmatrix} \right] \in K_0(K(L^2(M))) \cong \mathbb{Z}$$

$$(1.4)$$

(日) (同) (三) (三) (三) (○) (○)

Persistence approximation property for maximal Roe algebras and applications

- Introduction

Filtered C^* -algebras

Definition

A filtered C^* -algebra A is a C^* -algebra equipped with a family $(A_r)_{r>0}$ of closed linear subspaces indexed by positive numbers such that:

- $A_r \subseteq A_{r'}$ if $r \leq r'$;
- A_r is stable by involution, i.e. for any $x \in A_r$, then $x^* \in A_r$;

- $A_r \cdot A_{r'} \subseteq A_{r+r'};$
- the subalgebra $\bigcup_{r>0} A_r$ is dense in A.

If A is unital, we impose that $1 \in A_r$, for any r > 0. If A is non unital filtered C^* -algebra, then its unitization \tilde{A} is filtered by $(A_r + \mathbb{C})_{r>0}$. We can define the homomorphism

$$\rho_A: \tilde{A} \to \mathbb{C}; a + z \to z$$

for $a \in A$ and $z \in \mathbb{C}$

Definition

Let A and B be two C*-algebras filtered by $(A_r)_{r>0}$ and $(B_r)_{r>0}$. A *-homomorphism $\phi: A \to B$ is said to be filtered if $\phi(A_r) \subseteq B_r$ for all r > 0.

Examples

- $K(L^2(X,\mu)$ for X a metric space and μ probability measure on X. More generally $A \otimes K(L^2(X,\mu))$ for A is a C^{*}-algebra.
- Roe algebras:
 - Σ proper discrete metric space, ${\mathcal H}$ separable Hilbert space.
 - $C[\Sigma]_r$: space of locally compact operators on $l^2(\Sigma) \otimes \mathcal{H}$ (i.e T satisfies fT and Tf are compact for all $f \in C_c(\Sigma)$) and with propagation less than r.
 - The Roe algebra of Σ is $C^*(\Sigma) = \overline{\bigcup_{r>0} C[\Sigma]_r} \subset \mathcal{L}(l^2(\Sigma) \otimes \mathcal{H})$ (filtered by $(C[\Sigma]_r)_{r>0}$).
- Also the maximal Roe algebras is filtered C^* algebras.
- C^* -algebras of groups and cross-products.

$\epsilon\text{-}r\text{-}\mathsf{projections}$ and $\epsilon\text{-}r\text{-}\mathsf{unitaries}$

Definition

Let A be a unital filtered C* algebra. for any r>0 and $\epsilon\in(0,\frac{1}{4}),$ we call:

- an element p in A an ϵ -r- projection if p belongs to $A_r, p = p^*$ and $||p^2 - p|| < \epsilon$. The set of ϵ -r- projections will be denoted by $P^{\epsilon,r}(A)$.
- an element u in A is an ϵ -r- unitary if u belongs to $A_{r,i} || u^* u 1 || < \epsilon$ and $|| u u^* 1 || < \epsilon$. The set of ϵ -r- unitaries in A will be denoted by $U^{\epsilon,r}(A)$.

We can construct a projection by continuous functional calculus on $\sigma(p)$ denoted by $k_0(p)$ and a unitary $k_1(u) = u(u^*u)^{-\frac{1}{2}}$.

Definition

For a unital filtered C* algebra A,we can define the following equivalent relation on $P^{\epsilon,r}_{\infty}(A) \times \mathbb{N}$ and $U^{\epsilon,r}_{\infty}(A)$:

- if p and q are elements of $P_{\infty}^{\epsilon,r}(A)$, l and l' are positive integers, $(p,l) \sim (q,l')$ if there exists a positive integer k and an element h of $P_{\infty}^{\epsilon,r}(A[0,1])$ such that $h(0) = \operatorname{diag}(p, I_{k+l'})$ and $h(1) = \operatorname{diag}(q, I_{k+l})$
- if u and v are elements of $U_{\infty}^{\epsilon,r}(A)$, $u \sim v$ if there exists an element h of $U_{\infty}^{3\epsilon,2r}(A[0,1])$ such that h(0) = u and h(1) = v.

If p is an element of $P^{\epsilon,r}_\infty(A)$ and l is an integer,we denote by $[p,l]_{\epsilon,r}$ the equivalent class of (p,l) modulo \sim . And if u is an element of $U^{\epsilon,r}_\infty(A)$ we denote by $[u]_{\epsilon,r}$ its equivalent class modulo \sim .

Quantitative K-theory

Definition

Let r > 0 and $\epsilon \in (0, \frac{1}{4})$. We define: (i) $K_0^{\epsilon,r}(A) = P_{\infty}^{\epsilon,r}(A) \times \mathbb{N}/ \sim$ unital and $K_0^{\epsilon,r}(A) = P_{\infty}^{\epsilon,r}(\tilde{A}) \times \mathbb{N}/ \sim$ such that $\dim k_0(\rho_A(p)) = l$ for A non unital.

(ii) $K_1^{\epsilon,r}(A) = U_{\infty}^{\epsilon,r}(\widetilde{A}) / \sim (\text{with } A = \widetilde{A} \text{ if } A \text{ is already unital}).$

Then $K_0^{\epsilon,r}(A)$ turns to be an abelian group where

$$[p,l]_{\epsilon,r} + [p',l']_{\epsilon,r} = [\operatorname{diag}(p,p'), l+l']_{\epsilon,r}$$

 $K_1^{\epsilon,r}(A)$ is also an abelian group with

$$[u]_{\epsilon,r} + [u']_{\epsilon,r} = [\operatorname{diag}(u, u')]_{\epsilon,r}$$

Lemma

If A is a filtered C^* - algebra, then $K^{\epsilon,r}_*(A) = K^{\epsilon,r}_0(A) \oplus K^{\epsilon,r}_1(A)$ is a \mathbb{Z}_2 - graded abelian group. For any filtered C* algebra A and any positive numbers ϵ, ϵ' and r, r' with $\epsilon \leq \epsilon' < \frac{1}{4}$ and $r \leq r'$, there exists natural group homomorphisms:

$$\begin{aligned} \bullet \ \iota_{0}^{\epsilon,r} &: K_{0}^{\epsilon,r}(A) \to K_{0}(A); [p,l]_{\epsilon,r} \mapsto [k_{0}(p)] - [I_{l}]; \\ \bullet \ \iota_{1}^{\epsilon,r} &: K_{1}^{\epsilon,r}(A) \to K_{1}(A); [u]_{\epsilon,r} \to [k_{1}(u)]; \\ \bullet \ \iota_{*}^{\epsilon,r} &= \iota_{0}^{\epsilon,r} \oplus \iota_{1}^{\epsilon,r}; \\ \bullet \ \iota_{0}^{\epsilon,\epsilon',r,r'} &: K_{0}^{\epsilon,r}(A) \to K_{0}^{\epsilon',r'}(A); [p,l]_{\epsilon,r} \mapsto [p,l]_{\epsilon',r'}; \\ \bullet \ \iota_{1}^{\epsilon,\epsilon',r,r'} &: K_{1}^{\epsilon,r}(A) \to K_{1}^{\epsilon',r'}(A); [u]_{\epsilon,r} \to [u]_{\epsilon',r'}; \\ \bullet \ \iota_{*}^{\epsilon,\epsilon',r,r'} &= \iota_{0}^{\epsilon,\epsilon',r,r'} \oplus \iota_{1}^{\epsilon,\epsilon',r,r'}. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Persistence approximation property for maximal Roe algebras and applications

- Introduction

Control pair

Definition

A control pair is a pair (λ, h) , where

- $\lambda > 1;$
- $h: (0, \frac{1}{4\lambda}) \to (1, +\infty); \epsilon \mapsto h_{\epsilon}$ is a map such that exists a non-increasing map $g: (0, \frac{1}{4\lambda}) \to (1, +\infty)$, with $h \leq g$.

The set of control pairs is equipped with a partial order: $(\lambda, h) \leq (\lambda', h')$ if $\lambda \leq \lambda'$ and $h_{\epsilon} \leq h'_{\epsilon}$ for all $\epsilon \in (0, \frac{1}{4\lambda'})$.

Definition

For any filtered C^* - algebra A, define the families $\mathcal{K}_0(A) = (K_0^{\epsilon,r}(A))_{0 < \epsilon < \frac{1}{4}, r > 0}, \ \mathcal{K}_1(A) = (K_1^{\epsilon,r}(A))_{0 < \epsilon < \frac{1}{4}, r > 0}, \ \mathcal{K}_*(A) = (K_*^{\epsilon,r}(A))_{0 < \epsilon < \frac{1}{4}, r > 0}.$

Controlled morphism

Definition

Let (λ, h) be a control pair, A and B be two filtered C*-algebras, and i, j be elements of $\{0, 1, *\}$. A (λ, h) -controlled morphism

 $\mathcal{F}: \mathcal{K}_i(A) \to \mathcal{K}_j(B)$

is a family $\mathfrak{F}=(F^{\epsilon,r})_{0<\epsilon<\frac{1}{4},r>0}$ of group homomorphisms

$$F^{\epsilon,r}: K_i^{\epsilon,r}(A) \to K_j^{\lambda\epsilon,h_\epsilon r}(B)$$

such that for any positive numbers ϵ,ϵ' and r,r' with $0<\epsilon\leq\epsilon'<\frac{1}{4\lambda}$, $r\leq r'$ and $h_\epsilon r\leq h_{\epsilon'}r'$, we have

$$F^{\epsilon',r'} \circ \iota_i^{\epsilon,\epsilon',r,r'} = \iota_j^{\lambda\epsilon,\lambda\epsilon',h_\epsilon r,h_{\epsilon'}r'} \circ F^{\epsilon,r}.$$

The composition of controlled morphism

Definition

If (λ,h) and (λ',h') are two control pairs,define

$$h * h' : (0, \frac{1}{4\lambda\lambda'}) \to (0, +\infty); \epsilon \mapsto h_{\lambda'\epsilon}h'_{\epsilon}.$$

Then $(\lambda\lambda', h * h')$ is a control pair. Let A, B_1 and B_2 be filtered C^* -algebras, i, j and l in $\{0, 1, *\}$. Let $\mathcal{F} = (F^{\epsilon, r})_{0 < \epsilon < \frac{1}{4\alpha_{\mathcal{F}}}, r > 0} : \mathcal{K}_i(A) \to \mathcal{K}_j(B_1)$ be a $(\alpha_{\mathcal{F}}, k_{\mathcal{F}})$ -controlled morphism,let $\mathcal{G} = (G^{\epsilon, r})_{0 < \epsilon < \frac{1}{4\alpha_{\mathcal{G}}}, r > 0} : \mathcal{K}_j(B_1) \to \mathcal{K}_l(B_2)$ be a $(\alpha_{\mathcal{G}}, k_{\mathcal{G}})$ -controlled morphism. Then $\mathcal{G} \circ \mathcal{F} : \mathcal{K}_i(A) \to \mathcal{K}_l(B_2)$ is the $(\alpha_{\mathcal{G}} \alpha_{\mathcal{F}}, k_{\mathcal{G}} * k_{\mathcal{F}})$ -controlled morphism defined by the family $(G^{\alpha_{\mathcal{F}}\epsilon, k_{\mathcal{F},\epsilon}E} \circ F^{\epsilon, r})_{0 < \epsilon < \frac{1}{4\alpha_{\mathcal{F}}\alpha_{\mathcal{G}}}, r > 0}$.

The equivalence of controlled morphism

Definition

Let A and B be filtered C*-algebras,and (λ, h) is a control pair. Let $\mathcal{F} = (F^{\epsilon,E})_{0 < \epsilon < \frac{1}{4\alpha_{\mathcal{F}}}, r > 0} : \mathcal{K}_i(A) \to \mathcal{K}_j(B)$ (resp. $\mathcal{G} = (G^{\epsilon,r})_{0 < \epsilon < \frac{1}{4\alpha_{\mathcal{G}}}, r > 0}$) be a $(\alpha_{\mathcal{F}}, k_{\mathcal{F}})$ - controlled morphism (resp. a $(\alpha_{\mathcal{G}}, k_{\mathcal{G}})$ - controlled morphism). Then we write $\mathcal{F} \overset{(\lambda,h)}{\sim} \mathcal{G}$ if • $(\alpha_{\mathcal{F}}, k_{\mathcal{F}}) \leq (\lambda, h)$ and $(\alpha_{\mathcal{G}}, k_{\mathcal{G}}) \leq (\lambda, h)$ • for any $\epsilon \in (0, \frac{1}{4\lambda})$ and r > 0, then $\iota_j^{\alpha_{\mathcal{G}}\epsilon, \lambda\epsilon, k_{\mathcal{F},\epsilon}r, h_{\epsilon}r} \circ F^{\epsilon,r} = \iota_j^{\alpha_{\mathcal{G}}\epsilon, \lambda\epsilon, k_{\mathcal{G},\epsilon}r, h_{\epsilon}r} \circ G^{\epsilon,r}.$

Controlled isomorphism

Definition

Let (λ, h) be a control pair, and $\mathcal{F} : \mathcal{K}_i(A) \to \mathcal{K}_j(B)$ be a $(\alpha_{\mathcal{F}}, k_{\mathcal{F}})$ -controlled morphism with $(\alpha_{\mathcal{F}}, k_{\mathcal{F}}) \leq (\lambda, h)$.

• ${\mathcal F}$ is called left $(\lambda,h)\text{-invertible}$ if there exists a controlled morphism

$$\mathfrak{G}:\mathfrak{K}_j(B)\to\mathfrak{K}_i(A)$$

such that $\mathfrak{G} \circ \mathfrak{F} \overset{(\lambda,h)}{\sim} \mathfrak{Id}_{\mathcal{K}_i(A)}$. and $\mathfrak{F} \circ \mathfrak{G} \overset{(\lambda,h)}{\sim} \mathfrak{Id}_{\mathcal{K}_j(B)}$.

• ${\mathcal F}$ is $(\lambda,h)\text{-isomorphism}$ if there exists a controlled morphism

$$\mathfrak{G}:\mathfrak{K}_j(B)\to\mathfrak{K}_i(A)$$

which is a (λ, h) -inverse for \mathfrak{F} .

Let (λ, h) be a control pair and let $\mathcal{F} : \mathcal{K}_i(A) \to \mathcal{K}_j(B)$ $(\alpha_{\mathcal{F}}, k_{\mathcal{F}})$ -controlled morphism.

Definition

•
$$\mathcal{F}$$
 is called (λ, h) -injective if $(\alpha_{\mathcal{F}}, k_{\mathcal{F}}) \leq (\lambda, h)$ and for any $0 < \epsilon < \frac{1}{4\lambda}$, any $r > 0$ and any $x \in K_i^{\epsilon,r}(A)$, then $F^{\epsilon,r}(x) = 0$ in $K_j^{\alpha_{\mathcal{F}}, k_{\mathcal{F}}, \epsilon^r}(B)$ implies that $\iota_i^{\epsilon, \lambda \epsilon, r, h_{\epsilon}r}(x) = 0$ in $K_i^{\lambda \epsilon, h_{\epsilon}r}(A)$;
• \mathcal{F} is called (λ, h) -surjective , if for any $0 < \epsilon < \frac{1}{4\lambda \alpha_{\mathcal{F}}}$, any $r > 0$ and $y \in K_j^{\epsilon,r}(B)$, there exists an element $x \in K_i^{\lambda \epsilon, h_{\epsilon}r}(A)$ such that $F^{\lambda \epsilon, h_{\lambda \epsilon}r}(x) = \iota_j^{\epsilon, \alpha_{\mathcal{F}} \lambda \epsilon, r, k_{\mathcal{F}, \lambda \epsilon} h_{\epsilon}r}(y)$ in $K_j^{\alpha_{\mathcal{F}} \lambda \epsilon, r, k_{\mathcal{F}, \lambda \epsilon} h_{\epsilon}r}(B)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Controlled exact sequence

Definition

Let (λ, h) be a control pair. Let $\mathcal{F} = (F^{\epsilon,r})_{0 < \epsilon < \frac{1}{4\alpha_{\mathcal{F}}}, r > 0} : \mathcal{K}_i(A) \to \mathcal{K}_j(B_1)$ be a $(\alpha_{\mathcal{F}}, k_{\mathcal{F}})$ -controlled morphism,and let $\mathcal{G} = (G^{\epsilon,r})_{0 < \epsilon < \frac{1}{4\alpha_{\mathcal{F}}}, r > 0} : \mathcal{K}_j(B_1) \to \mathcal{K}_l(B_2)$ be a $(\alpha_{\mathcal{G}}, k_{\mathcal{G}})$ -controlled morphism,where i, j and l are in $\{0, 1, *\}$ and A, B_1, B_2 are filtered C^* -algebras. Then the composition

$$\mathcal{K}_i(A) \xrightarrow{\mathcal{F}} \mathcal{K}_j(B_1) \xrightarrow{\mathcal{G}} \mathcal{K}_l(B_2)$$

is said to be (λ, h) -exact at $\mathcal{K}_j(B_1)$ if $\mathfrak{G} \circ \mathfrak{F} = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

and if for any $0 < \epsilon < \frac{1}{4 \max\{\lambda \alpha_{\mathcal{F}}, \alpha_{\mathcal{G}}\}}$, any r > 0 and $y \in K_j^{\epsilon, r}(B_1)$ such that $G^{\epsilon, r}(y) = 0$ in $K_j^{\alpha_{\mathcal{G}} \epsilon, k_{\mathcal{G}}, \epsilon^r}(B_2)$, there exists an element x in $K_i^{\lambda \epsilon, h_\epsilon r}(A)$ such that $F^{\lambda \epsilon, h_{\lambda \epsilon} r}(x) = \iota_j^{\epsilon, \alpha_{\mathcal{F}} \lambda \epsilon, r, k_{\mathcal{F}, \lambda \epsilon} h_\epsilon r}(y)$

in $K_j^{\alpha_{\mathcal{F}}\lambda\epsilon,k_{\mathcal{F}\lambda\epsilon}h_{\epsilon}r}(B_1)$.

Persistence approximation property for maximal Roe algebras and applications

- Introduction

Completely filtered extension

Definition

Let A be a filtered C*-algebra. let J be an ideal of A and set $J_r = J \cap A_r$. The extension of C*- algebras

$$0 \to J \to A \to A/J \to 0$$

is called a completely filtered extension of $C^{\ast}\mathchar`-$ algebras if the bijection continuous linear map

$$A_r/J_r \to (A_r+J)/J$$

induced by the inclusion $A_r \hookrightarrow A$ is a complete isometry i.e for any integer n, any r > 0 and $x \in M_n(A_r)$,then

$$\inf_{y \in M_n(J_r)} \|x + y\| = \inf_{y \in M_n(J)} \|x + y\|.$$

Controlled six term exact sequence

Theorem Oyono-Oyono and G.Yu

There exists a control pair (λ,h) such that for any completely filtered extensions of $C^*\mbox{-algebras}$

$$0 \to J \xrightarrow{j} A \xrightarrow{q} A/J \to 0,$$

the following six-term sequence is $(\lambda,h)\text{-exact}$

$$\begin{array}{c} \mathcal{K}_{0}(J) \xrightarrow{j_{*}} \mathcal{K}_{0}(A) \xrightarrow{q_{*}} \mathcal{K}_{0}(A/J) \\ \xrightarrow{\mathcal{D}_{J,A}} & \xrightarrow{\mathcal{D}_{J,A}} \\ \mathcal{K}_{1}(A/J) \xleftarrow{q_{*}} \mathcal{K}_{1}(A) \xleftarrow{j_{*}} \mathcal{K}_{1}(J) \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Controlled Roe transformation

For any $z \in KK_1(A, B)$, then z can be represent by a triple (H_A, π, T) where:

- $\pi: A \to \mathcal{L}_B(H_B)$ is a *-representation of A on H_B ;
- $T \in \mathcal{L}_B(H_B)$ is a self-adjoint operator;
- $[T, \pi(a)], \pi(a)[T^2 Id_{H_B}]$ are compact operators in $K(H_B) \cong K(H) \otimes B$

Let
$$P = (\frac{1+T}{2}) \in \mathcal{L}_B(H_B)$$
 and

$$E^{(\pi,T)} = \{(a, P\pi(a)P + y) : a \in A, y \in B \otimes K(H)\}$$

Then we have a semi-split exact extension:

$$0 \to B \otimes K(H) \to E^{(\pi,T)} \to A \to 0$$

where the completely positive section is $s: A \to E^{\pi,T}; a \mapsto (a, P\pi(a)P).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

By the functor property of $C^*_{max}(X, \cdot)$, then we have a semi-split exact extension:

$$0 \to C^*_{max}(X,B) \to E^{\pi,T}_{X,max} \to C^*_{max}(X,A) \to 0$$

where $E_{X,max}^{\pi,T}=C_{max}^{*}(X,E^{\pi,T})$

Proposition

The controlled boundary map $\mathcal{D}^{\pi,T}=\mathcal{D}_{C^*_{max}(X,B),E^{\pi,T}_{X,max}}$ of the extension

$$0 \to C^*_{max}(X,B) \to E^{\pi,T}_{X,max} \to C^*_{max}(X,A) \to 0$$

only depends on the class z.

Odd case

Let A and B be two C^* -algebra.then there exists a control pair (α_X, k_X) such that for any $z \in KK_1(A, B)$,there exists a (α_X, k_X) - controlled morphism

$$\hat{\sigma}_{X,max}(z): \mathcal{K}_*(C^*_{max}(X,A)) \to \mathcal{K}_{*+1}(C^*_{max}(X,B))$$

Even case

Using Bott periodicity theorem, Let A and B be two C^* -algebras,for any $z \in KK_0(A, B)$,there exists a control pair (α_X, k_X) and even degree (α_X, k_X) -controlled morphism

 $\hat{\sigma}_{X,max}(z): \mathcal{K}_*(C^*_{max}(X,A)) \to \mathcal{K}_*(C^*_{max}(X,B))$

For any positive number d and probability η of the Rips complex $P_d(X)$ can be written as $\eta = \sum_{x \in X} \lambda_x(\eta) \delta_x$, where δ_x is the Dirac probability at x, and $\lambda_x : P_d(X) \to [0, 1]$ is a continuous function. Let

$$h_d: \begin{cases} X \times X \to C_0(P_d(X)) \\ (x,y) \mapsto \lambda_x^{\frac{1}{2}} \lambda_y^{\frac{1}{2}} \end{cases}$$

Let $(e_x)_{x\in X}$ be the canonical basis of $l^2(X)$, e be a rank one projection in \mathcal{H} , and P_d be defined as the extension by linearity and continuity of

$$P_d(e_x \otimes \xi \otimes f) = \sum_{y \in X} e_y \otimes (e\xi) \otimes (h(x, y)f)$$

for every $x \in X, \xi \in \mathcal{H}$ and $f \in C_0(P_d(X))$. As $\sum_{x \in X} \lambda_x = 1$, P_d is projection of $K(l^2(X)) \otimes C_0(P_d(X))$ of propagation less than d. Hence, P_d define a class $[P_d, 0]_{\epsilon, r'} \in K_0^{\epsilon, r'}(C^*_{max}(X, C_0(P_d(X))))$ for any $\epsilon \in (0, \frac{1}{4})$ and $r' \geq d$.

Quantitative maximal coarse Baum-Connes assembly map

Definition

Let A be a C^* -algebra, $\epsilon \in (0, \frac{1}{4})$ and positive numbers d, r satisfying that $k_X(\epsilon)d \leq r$. The quantitative assembly map $\hat{\mu}_{X,A,max,*} = (\mu_{X,A,max,*}^{\epsilon,d,r})_{\epsilon,r}$ is defined as the family of maps

$$\mu_{X,A,max,*}^{\epsilon,d,r} : \begin{cases} KK_*(C_0(P_d(X)), A) \to K_*^{\epsilon,r}(C_{max}^*(X, A)) \\ z \mapsto \iota_*^{\alpha_X \epsilon', \epsilon, k_X(\epsilon')r', r} \circ \hat{\sigma}_{X,max}(z)[P_d, 0]_{\epsilon', r'} \end{cases}$$

where ϵ' and r' satisfy:

- $\epsilon' \in (0, \frac{1}{4})$ such that $\alpha_X \epsilon' \leq \epsilon$.
- $d \leq r'$ such that $k_X(\epsilon')r' \leq r$.

Let $KK_*(P_d(X), A)$ denote $KK_*(C_0(P_d(X)), A)$.

Definition

Let A be a G-algebra, We say that:

- (Quantitative injectivity) $\mu_{X,A,max,*}$ is quantitative injective if for any d > 0, there exists $\epsilon \in (0, \frac{1}{4})$ such that for any r > 0satisfying $k_X(\epsilon)d \leq r$, there exists d' > d such that for any $z \in KK_*(P_d(X), A)$, $\mu_{X,A,max,*}^{\epsilon,d,r}(z) = 0$ implies that $(q_d^{d'})^*(z) = 0.$
- (Quantitative surjectivity) $\mu_{X,A,max,*}$ is quantitative surjective if there exists $\epsilon \in (0, \frac{1}{4})$ such that for any r > 0 such that, there exists $\epsilon' \in (\epsilon, \frac{1}{4})$ and positive numbers d, r' such that $r \leq r'$ and $k_X(\epsilon')d \leq r'$, for any $y \in K_*^{\epsilon,r}(C_{max}^*(X,A))$ there exists $z \in KK_*(P_d(X), A)$ such that $\mu_{X,A,max,*}^{\epsilon',d,r'}(z) = \iota_*^{\epsilon,\epsilon',r,r'}(y)$

Proposition

Let X be a discrete metric space with bounded geometry and A be a $C^{\ast}\mbox{-algebra}.$

- If $\mu_{X,A,max,*}$ is quantitative injective then $\mu_{X,A,max,*}$ is one-to-one.
- If $\mu_{X,A,max,*}$ is quantitative surjective then $\mu_{X,A,max,*}$ is onto.

Definition

• $QI_{X,A,max,*}(d, d', \epsilon, r)$:for any $x \in KK_*((P_d(X), A)$, then $\mu_{X,A,max,*}^{\epsilon,d,r}(x) = 0$ implies $(q_d^{d'})^*(x) = 0$ in $KK_*(P_{d'}(X), A)$ • $QS_{X,A,max,*}(d, \epsilon, \epsilon', r, r')$: for any $y \in K_*^{\epsilon,r}(C_{max}^*(X, A))$, then there exist a $x \in KK_*(P_d(X), A))$ such that $\mu_{X,A,max,*}^{\epsilon',d,r'}(x) = \iota_*^{\epsilon,\epsilon',r,r'}(y).$

Theorem

Let X be a discrete matric space with bounded geometry and A is a $C^*\mbox{-algebra}.$ The following are equivalent:

- (1) $\mu_{X,l^{\infty}(\mathbb{N},K(H)\otimes A),max,*}$ is one to one,
- (2) For any $d > 0, \epsilon \in (0, \frac{1}{4})$ and r > 0 with $k_X(\epsilon)d \leq r$, there exists d' such that $d \leq d'$ and $QI_{X,A,max,*}(d, d', \epsilon, r)$ holds.

Theorem

Let X be a discrete metric space with bounded geometry and A is a $C^*\text{-algebra}.$ Then there exist $\lambda>1$ such that the following are equivalent:

- (1) $\mu_{X,l^{\infty}(\mathbb{N},K(H)\otimes A),max,*}$ is onto;
- (2) For any positive numbers ϵ with $\epsilon < \frac{1}{4\lambda}$ and r > 0, there exist d > 0 and r' > 0 with $k_X(\epsilon)d \le r$ and $r \le r'$ for which $QS_{X,A,max,*}(d, r, r', \epsilon, \lambda\epsilon)$ is satisfied.

Corollary

Let X be a discrete metric space with bounded geometry and A is a $C^*\mbox{-algebra}.$ Then we have the following results:

• $\mu_{X,A,max,*}$ is one to one. Then for any $\epsilon \in (0, \frac{1}{4})$ and every d > 0, r > 0 such that $k_X(\epsilon)d \leq r$, there exists d' with $d \leq d'$ such that

 $QI_{X,A,max,*}(d,d',\epsilon,r)$ holds.

• $\mu_{X,A,max,*}$ is onto. Then for some $\lambda \geq 1$ and any $\epsilon \in (0, \frac{1}{4\lambda})$ and every r > 0, there exists d > 0, r' > 0 such that $k_X(\epsilon)d \leq r$ and $r \leq r'$ such that $QS_{X,A,max,*}(d, r, r', \epsilon, \lambda\epsilon)$ holds.

Persistence approximation property

Persistence approximation property

Persistence approximation property was introduced by Oyono-Oyono and Guoliang Yu. It provides the geometric obstruction to Baum-Connes conjecture.

Definition

Let *B* be a filtered *C*^{*}-algebra. we sat that $K_*(B)$ has persistence approximation property if: for any $\epsilon \in (0, \frac{1}{4})$ and r > 0, there exists $\epsilon' \in (\epsilon, \frac{1}{4})$ and $r' \ge r$ such that for any $x \in K_*(B)$, then $\iota_*^{\epsilon,\epsilon',r,r'}(x) \ne 0$ in $K_*^{\epsilon',r'}(B)$ implies that $\iota_*^{\epsilon,r}(x) \ne 0$ in $K_*(B)$. $\mathcal{PA}_*(B, \epsilon, \epsilon', r, r')$: for any $x \in K_*^{\epsilon,r}(B)$, then $\iota_*^{\epsilon,r}(x) = 0$ in $K_*(B)$ implies that $\iota_*^{\epsilon,\epsilon',r,r'}(x) = 0$ in $K_*^{\epsilon',r'}(B)$. Persistence approximation property for maximal Roe algebras and applications

Persistence approximation property

Persistence approximation property for crossed with groups

Theorem Oyono-Oyono and G.Yu

Let Γ be a finite generated group and A be a $C^*\mbox{-algebra}\mbox{.} Assume that:$

- $\mu_{\Gamma,l^{\infty}(\mathbb{N},A\otimes K(H))}$ is onto and $\mu_{\Gamma,A}$ is one to one.
- Γ admits a cocompact universal example for proper actions.

Then for some universal constant $\lambda_{PA} \ge 1$, any $\epsilon \in (0, \frac{1}{4\lambda_{PA}})$, any r > 0, and any Γ - C^* -algebra A there exists $r' \ge r$ such that $\mathcal{PA}_*(A \rtimes_{red} \Gamma, \epsilon, \lambda_{PA}\epsilon, r, r')$ holds.

Persistence approximation property for maximal Roe algebras and applications

Persistence approximation property

Persistence approximation property for crossed product with groupoids

Theorem Clément Dell'Aiera

Let G be an étale groupoid such that:

- $G^{(0)}$ is compact.
- G admits a cocompact example for universal space for proper actions.

Then there exists a universal constant $\lambda_{PA} \geq 1$ such that for any G-algebra A, if $\mu_{G,l^{\infty}(\mathbb{N},A\otimes K(H))}$ is onto and $\mu_{G,A}$ is one to one, then for any $\epsilon \in (0, \frac{1}{4\lambda_{PA}})$ and every $F \in \mathcal{E}$, there exists a F such that $F \subseteq F'$ and $\mathcal{PA}_*(A \rtimes_{red} G, \epsilon, \lambda_{PA}\epsilon, F, F')$ holds.

Persistence approximation property

For the metric space, we need a condition to replace that the group(groupoid) admits a cocompact universal example for proper actions.

Definition

A discrete metric space is coarsely uniformly contractible: if for every d > 0, there exists $d' \ge d$ such that any compact subset of $P_d(X)$ lies in a contractible invariant compact subset of $P_{d'}(X)$.

Example 2.5 D.Meintrup and T.Schick

Any discrete hyperbolic metric space is coarsely uniformly contractible.

Persistence approximation property for maximal Roe algebras and applications

Persistence approximation property

Persistence approximation property for maximal Roe algebras

Theorem Q.Wang and Z.Wang

Let X be a discrete metric space with bounded geometry and A is a $C^{\ast}\mbox{-algebra}.$ Assume that:

• X is coarsely uniformly contractible.

• $\mu_{X,l^{\infty}(\mathbb{N},A\otimes K(H)),max,*}$ is onto and $\mu_{X,A,max,*}$ is one to one Then there exists a universal constant $\lambda_{PA} \geq 1$ such that for any $\epsilon \in (0, \frac{1}{4\lambda_{PA}})$ and every r > 0, there exists a r' > 0 such that $r \leq r'$ and $\mathcal{PA}_{*}(C^{*}_{max}(X,A),\epsilon,\lambda_{PA}\epsilon,r,r')$ holds. Persistence approximation property

Theorem Q.Wang and Z.Wang

Let X be a discrete metric space with bounded geometry. Assume that X admits a fibred coarse embedding into Hilbert space and X is coarsely uniformly contractible. then there exists a universal constant $\lambda_{PA} \geq 1$ such that: for any $\epsilon \in (0, \frac{1}{4\lambda_{PA}})$ and any r > 0 there exists r' > r such that $\mathcal{PA}_*(C^*_{max}(X), \epsilon, \lambda_{PA}\epsilon, r, r')$ holds.

Persistence approximation property

Theorem Q.Wang and Z.Wang

Let Γ be a finite generated residually finite group with haagerup property and admits a cocompact universal example for proper actions. Then there exists a universal constant $\lambda_{PA} \geq 1$ for any $\epsilon \in (0, \frac{1}{4\lambda_{PA}})$ and any r > 0 there exists r' > r such that $\mathcal{PA}_*(C^*_{max}(X(\Gamma)), \epsilon, \lambda_{PA}\epsilon, r, r')$ holds.

Example

Both \mathbb{F}_2 and $SL_2(\mathbb{Z})$ are finite generated group with Haagerup property. Since their classifying space is a tree and this tree is cocompact. So they admit a cocompact universal example for proper actions. Hence the maximal Roe algebra of their box space will have persistence approximation property.

Let $\mathfrak{X} = (X_i)_{i \in \mathbb{N}}$ be a family of discrete metric space with bounded geometry and $\mathcal{A} = (A_i)_{i \in \mathbb{N}}$ be a family of C*-algebras. Denote $C^*_{max}(\mathfrak{X}, \mathcal{A})$ be the closure of $\bigcup_{r>0} (\prod_{i \in \mathbb{N}} \mathbb{C}[X_i, A_i])_r$ of $\prod_{i \in \mathbb{N}} C^*_{max}(X_i, A_i)$. Then $C^*_{max}(\mathfrak{X}, \mathcal{A})$ is filtered C*-algebra.

Lemma

There exist a control pair (λ,h) and a $(\lambda,h)\text{-controlled}$ isomorphism

$$\mathfrak{K}_*(C^*_{max}(\mathfrak{X},\mathcal{A})) \to \prod_i \mathfrak{K}_*(C^*_{max}(X_i,A_i))$$

Quantitative assembly map for a family of metric space

Definition

For any
$$\epsilon \in (0, \frac{1}{4})$$
 and $d, r > 0$ with $k_{\mathfrak{X}}(\epsilon) \cdot d \leq r$. Define:

$$\mu_{\mathfrak{X},max,*}^{\infty,\epsilon,d,r}: \begin{cases} \prod_{i\in\mathbb{N}} KK_*(C_0(P_d(X_i)),\mathbb{C}) \to K_*^{\epsilon,r}(C_{max}^*(\mathfrak{X})) \\ z \mapsto \iota_*^{\alpha_{\mathfrak{X}}\epsilon',\epsilon,k_{\mathfrak{X}}(\epsilon')r',r} \circ \hat{\sigma}_{\mathfrak{X},max}^{\infty}(z)[P_{d,\mathfrak{X}}^{\infty},0]_{\epsilon',r'} \end{cases}$$

where ϵ' and r' satisfy:

•
$$\epsilon' \in (0, \frac{1}{4})$$
 such that $lpha_{\mathfrak{X}} \cdot \epsilon' \leq \epsilon$;

•
$$d \leq r'$$
 and $k_{\mathfrak{X}}(\epsilon') \cdot r' \leq r$.

Definition

•
$$QI_{\mathfrak{X},max,*}(d,d',r,\epsilon)$$
: for any $x \in \prod_{i\in\mathbb{N}} KK_*(P_d(X_i),\mathbb{C})$,
then $\mu_{\mathfrak{X},max,*}^{\infty,\epsilon,d,r}(x) = 0$ implies $(q_d^{d'})^*(x) = 0$ in
 $\prod_{i\in\mathbb{N}} KK_*(P_d(X_i),\mathbb{C})$
• QS (d,m,n',ϵ,d') : for any $n\in K^{\epsilon,r}(C^*, -(\mathfrak{X}))$, there

•
$$QS_{\mathfrak{X},max,*}(d,r,r',\epsilon,\epsilon')$$
: for any $y \in K^{\epsilon,r}_{*}(C^*_{max}(\mathfrak{X}))$, there exists $x \in \prod_{i \in \mathbb{N}} KK_*(P_d(X_i),\mathbb{C})$ such that $\mu^{\infty,\epsilon',d,r'}_{\mathfrak{X},max,*}(x) = \iota^{\epsilon,\epsilon',r,r'}_*(y)$

Let $\Sigma = \bigsqcup_{i \in \mathbb{N}} X_i$, where $(X_i)_{i \in \mathbb{N}}$ is a family of metric space satisfying: for any r > 0, there exists an integer N_r such that for any integer i, any ball of radius r in X_i is no more than N_r elements.

The metric d on Σ is defined to be:

- on each X_i , the metric is just the usual metric on X_i ;
- $d(X_i, X_j) \ge i + j$ if $i \ne j$.

Theorem Q.Wang and Z.Wang

Let $\mathfrak{X} = (X_i)_{i \in \mathbb{N}}$ be a family of discrete metric space with bounded geometry.Let $\Sigma = \bigsqcup_{i \in \mathbb{N}} X_i$ defined as before. Assume that:

- for any $\epsilon \in (0, \frac{1}{4})$ and positive numbers such that $\alpha_{\mathfrak{X}}(\epsilon) \cdot d \leq r$, there exists d' with $d \leq d'$, such that $QI_{\mathfrak{X},max,*}(d, d', \epsilon, r)$ is holds.
- For some $\lambda > 1$ and any $\epsilon \in (0, \frac{1}{4\lambda}), r > 0$, there exists d > 0, r' > r with $\alpha_{\mathfrak{X}}(\epsilon) \cdot d \leq r'$ such that $QS_{\mathfrak{X},max,*}(d, r, r', \epsilon, \lambda\epsilon).$

Then Σ satisfies the maximal coarse Baum-Connes conjecture.

- ロ ト - 4 回 ト - 4 □ - 4

Persistence approximation property for maximal Roe algebras and applications

└─ Thank you

Thank you !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ