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Operator propagation

Let X be a proper metric space(i.e. closed balls are compact)
and let π : C0(X)→ L(H) be a representation of C0(X) on
a Hilbert space H.

Example: H = L2(X,µ) for µ Borelian measure on X and π
the pointwise multiplication.

Definition

If T is an operator of L(H), then SuppT is the
complementary of the open subset of X ×X
{(x, y) ∈ X ×X such that there exists f and g such that
f(x) 6= 0, g(y) 6= 0 and π(f) · T · π(g) = 0}
T has propagation less than r if d(x, y) ≤ r for all
(x, y) ∈ SuppT .
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Propagation and indices

Let D be an elliptic differential operator on a compact
manifold M .

Let Q be a parametrix for D.

Then S0 := Id−QD and S1 := Id−DQ are smooth kernel
operators on M ×M :

PD =

(
S2

0 S0(Id+ S0)Q
S1D Id− S2

1

)
(1.1)

is an idempotent and we can choose Q such that PD has
arbitrary small propagation.
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D is a Fredholm operator and

Ind (D) = [PD]−
[(

0 0
0 Id

)]
∈ K0(K(L2(M))) ∼= Z

(1.2)

How can we keep track of the propagation and have
homotopy invariance ?



Persistence approximation property for maximal Roe algebras and applications

Introduction

Quasi-projection

Definition

If X is a proper metric space and π : C0(X)→ L(H) is a
representation of C0(X) on a Hilbert space H, let 0 < ε < 1

4
(control) and r > 0 (propagation). Then q ∈ L(H) is an
ε-r-projection if q = q∗, ‖q − q2‖ < ε and q has propagation less
than r .

If q is an ε-r-projection, then its spectrum has a gap around 1
2 .

Hence there exists k0 : σ(q)→ {0, 1} continuous and such
that k0(t) = 0 if t < 1

2 and k0(t) = 1 if t > 1
2 .

By continuous functional calculus,k0(q) is a projection such
that ‖k0(q)− q‖ ≤ 2ε.
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Quasi-projections and indices

Let D be a differential elliptic operator on a manifold, let Q
be a parametrix. Set S0 := Id−QD and S1 := Id−DQ and

PD =

(
S2

0 S0(Id+ S0)Q
S1D Id− S2

1

)
(1.3)

Then
((2P ∗D − 1)(2PD − 1) + 1)

1
2PD((2P ∗D − 1)(2PD − 1) + 1)−

1
2 is

a projection conjugated to the idempotent PD;



Persistence approximation property for maximal Roe algebras and applications

Introduction

Choosing Q = Qε,r with propagation small enough and
approximating
((2P ∗D − 1)(2PD − 1) + 1)

1
2PD((2P ∗D − 1)(2PD − 1) + 1)−

1
2

by a power series, we can for all 0 < ε < 1
4 and r > 0,

construct a ε-r-projection qε,rD such that D such that

Ind (D) = [k0(qε,rD )]−
[(

0 0
0 Id

)]
∈ K0(K(L2(M))) ∼= Z

(1.4)
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Filtered C∗-algebras

Definition

A filtered C∗-algebra A is a C∗-algebra equipped with a family
(Ar)r>0 of closed linear subspaces indexed by positive numbers
such that:

Ar ⊆ Ar′ if r ≤ r′;
Ar is stable by involution,i.e. for any x ∈ Ar, then x∗ ∈ Ar;
Ar ·Ar′ ⊆ Ar+r′ ;
the subalgebra

⋃
r>0Ar is dense in A.
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If A is unital, we impose that 1 ∈ Ar, for any r > 0. If A is non
unital filtered C∗-algebra, then its unitization Ã is filtered by
(Ar + C)r>0. We can define the homomorphism

ρA : Ã→ C; a+ z → z

for a ∈ A and z ∈ C

Definition

Let A and B be two C∗-algebras filtered by (Ar)r>0 and (Br)r>0.
A *-homomorphism φ : A→ B is said to be filtered if φ(Ar) ⊆ Br
for all r > 0.
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Examples

K(L2(X,µ) for X a metric space and µ probability measure
on X. More generally A⊗K(L2(X,µ) for A is a C∗-algebra.

Roe algebras:

Σ proper discrete metric space, H separable Hilbert space.
C[Σ]r : space of locally compact operators on l2(Σ)⊗H (i.e
T satisfies fT and Tf are compact for all f ∈ Cc(Σ)) and
with propagation less than r.
The Roe algebra of Σ is C∗(Σ) =

⋃
r>0 C[Σ]r ⊂ L(l2(Σ)⊗H)

(filtered by (C[Σ]r)r>0).

Also the maximal Roe algebras is filtered C∗- algebras.

C∗-algebras of groups and cross-products.
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ε-r-projections and ε-r-unitaries

Definition

Let A be a unital filtered C* algebra. for any r > 0 and
ε ∈ (0, 1

4),we call:

an element p in A an ε-r- projection if p belongs to Ar,p = p∗

and ‖p2 − p‖ < ε.The set of ε-r- projections will be denoted
by P ε,r(A).

an element u in A is an ε-r- unitary if u belongs to
Ar,‖u∗u− 1‖ < ε and ‖uu∗ − 1‖ < ε. The set of ε-r-
unitaries in A will be denoted by U ε,r(A).

We can construct a projection by continuous functional calculus on
σ(p) denoted by k0(p) and a unitary k1(u) = u(u∗u)−

1
2 .
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Definition

For a unital filtered C* algebra A,we can define the following
equivalent relation on P ε,r∞ (A)× N and U ε,r∞ (A):

if p and q are elements of P ε,r∞ (A), l and l′ are positive
integers,(p, l) ∼ (q, l′) if there exists a positive integer k and
an element h of P ε,r∞ (A[0, 1]) such that h(0) = diag(p, Ik+l′)
and h(1) = diag(q, Ik+l)

if u and v are elements of U ε,r∞ (A),u ∼ v if there exists an
element h of U3ε,2r

∞ (A[0, 1]) such that h(0) = u and h(1) = v.

If p is an element of P ε,r∞ (A) and l is an integer,we denote by
[p, l]ε,r the equivalent class of (p, l) modulo ∼. And if u is an
element of U ε,r∞ (A) we denote by [u]ε,r its equivalent class modulo
∼.
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Quantitative K-theory

Definition

Let r > 0 and ε ∈ (0, 1
4). We define:

(i) Kε,r
0 (A) = P ε,r∞ (A)× N/ ∼ unital and

Kε,r
0 (A) = P ε,r∞ (Ã)× N/ ∼ such that dim k0(ρA(p)) = l for

A non unital.

(ii) Kε,r
1 (A) = U ε,r∞ (Ã)/ ∼ (with A = Ã if A is already unital).

Then Kε,r
0 (A) turns to be an abelian group where

[p, l]ε,r + [p′, l′]ε,r = [diag(p, p′), l + l′]ε,r

Kε,r
1 (A) is also an abelian group with

[u]ε,r + [u′]ε,r = [diag(u, u′)]ε,r

.
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Lemma

If A is a filtered C∗- algebra, then Kε,r
∗ (A) = Kε,r

0 (A)⊕Kε,r
1 (A)

is a Z2- graded abelian group.
For any filtered C* algebra A and any positive numbers ε, ε′ and
r, r′ with ε ≤ ε′ < 1

4 and r ≤ r′,there exists natural group
homomorphisms:

ιε,r0 : Kε,r
0 (A)→ K0(A); [p, l]ε,r 7→ [k0(p)]− [Il];

ιε,r1 : Kε,r
1 (A)→ K1(A); [u]ε,r → [k1(u)];

ιε,r∗ = ιε,r0 ⊕ ι
ε,r
1 ;

ιε,ε
′,r,r′

0 : Kε,r
0 (A)→ Kε′,r′

0 (A); [p, l]ε,r 7→ [p, l]ε′,r′ ;

ιε,ε
′,r,r′

1 : Kε,r
1 (A)→ Kε′,r′

1 (A); [u]ε,r → [u]ε′,r′ ;

ιε,ε
′,r,r′

∗ = ιε,ε
′,r,r′

0 ⊕ ιε,ε
′,r,r′

1 .
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Control pair

Definition

A control pair is a pair (λ, h),where

λ > 1;

h : (0, 1
4λ)→ (1,+∞); ε 7→ hε is a map such that exists a

non-increasing map g : (0, 1
4λ)→ (1,+∞), with h ≤ g.

The set of control pairs is equipped with a partial
order:(λ, h) ≤ (λ′, h′) if λ ≤ λ′ and hε ≤ h

′
ε for all ε ∈ (0, 1

4λ′ ).

Definition

For any filtered C∗- algebra A,define the families
K0(A) = (Kε,r

0 (A))0<ε< 1
4
,r>0, K1(A) = (Kε,r

1 (A))0<ε< 1
4
,r>0,

K∗(A) = (Kε,r
∗ (A))0<ε< 1

4
,r>0.
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Controlled morphism

Definition

Let (λ, h) be a control pair,A and B be two filtered C∗-algebras,
and i, j be elements of {0, 1, ∗}. A (λ, h)-controlled morphism

F : Ki(A)→ Kj(B)

is a family F = (F ε,r)0<ε< 1
4
,r>0 of group homomorphisms

F ε,r : Kε,r
i (A)→ Kλε,hεr

j (B)

such that for any positive numbers ε, ε′ and r, r′ with
0 < ε ≤ ε′ < 1

4λ , r ≤ r′ and hεr ≤ hε′r′, we have

F ε
′,r′ ◦ ιε,ε

′,r,r′

i = ι
λε,λε′,hεr,hε′r

′

j ◦ F ε,r.
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The composition of controlled morphism

Definition

If (λ, h) and (λ′, h′) are two control pairs,define

h ∗ h′ : (0,
1

4λλ′
)→ (0,+∞); ε 7→ hλ′εh

′
ε.

Then (λλ′, h ∗ h′) is a control pair. Let A,B1 and B2 be filtered
C∗-algebras, i, j and l in {0, 1, ∗}. Let
F = (F ε,r)0<ε< 1

4αF
,r>0 : Ki(A)→ Kj(B1) be a (αF, kF)-

controlled morphism,let
G = (Gε,r)0<ε< 1

4αG
,r>0 : Kj(B1)→ Kl(B2) be a (αG, kG)-

controlled morphism. Then G ◦ F : Ki(A)→ Kl(B2) is the
(αGαF, kG ∗ kF)-controlled morphism defined by the family
(GαFε,kF,εE ◦ F ε,r)0<ε< 1

4αFαG
,r>0.
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The equivalence of controlled morphism

Definition

Let A and B be filtered C∗-algebras,and (λ, h) is a control pair.
Let F = (F ε,E)0<ε< 1

4αF
,r>0 : Ki(A)→ Kj(B)(resp.

G = (Gε,r)0<ε< 1
4αG

,r>0) be a (αF, kF)- controlled morphism (resp.

a (αG, kG)- controlled morphism). Then we write F
(λ,h)∼ G if

(αF, kF) ≤ (λ, h) and (αG, kG) ≤ (λ, h)

for any ε ∈ (0, 1
4λ) and r > 0, then

ι
αFε,λε,kF,εr,hεr
j ◦ F ε,r = ι

αGε,λε,kG,εr,hεr
j ◦Gε,r.
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Controlled isomorphism

Definition

Let (λ, h) be a control pair, and F : Ki(A)→ Kj(B) be a
(αF, kF)-controlled morphism with (αF, kF) ≤ (λ, h).

F is called left (λ, h)-invertible if there exists a controlled
morphism

G : Kj(B)→ Ki(A)

such that G ◦ F (λ,h)∼ IdKi(A). and F ◦ G (λ,h)∼ IdKj(B).

F is (λ, h)-isomorphism if there exists a controlled morphism

G : Kj(B)→ Ki(A)

which is a (λ, h)-inverse for F.
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Let (λ, h) be a control pair and let F : Ki(A)→ Kj(B)
(αF, kF)-controlled morphism.

Definition

F is called (λ, h)-injective if (αF, kF) ≤ (λ, h) and for any
0 < ε < 1

4λ , any r > 0 and any x ∈ Kε,r
i (A), then F ε,r(x) = 0

in K
αFε,kF,εr
j (B) implies that ιε,λε,r,hεri (x) = 0 in Kλε,hεr

i (A);

F is called (λ, h)-surjective ,if for any 0 < ε < 1
4λαF

, any r > 0

and y ∈ Kε,r
j (B), there exists an element x ∈ Kλε,hεr

i (A) such

that F λε,hλεr(x) = ι
ε,αFλε,r,kF,λεhεr
j (y) in K

αFλε,r,kF,λεhεr
j (B).
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Controlled exact sequence

Definition

Let (λ, h) be a control pair. Let
F = (F ε,r)0<ε< 1

4αF
,r>0 : Ki(A)→ Kj(B1) be a (αF, kF)-controlled

morphism,and let G = (Gε,r)0<ε< 1
4αF

,r>0 : Kj(B1)→ Kl(B2) be a

(αG, kG)-controlled morphism,where i, j and l are in {0, 1, ∗} and
A,B1, B2 are filtered C∗-algebras. Then the composition

Ki(A)
F→ Kj(B1)

G→ Kl(B2)

is said to be (λ, h)-exact at Kj(B1) if G ◦ F = 0
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and if for any 0 < ε < 1
4 max{λαF,αG} , any r > 0 and y ∈ Kε,r

j (B1)

such that Gε,r(y) = 0 in K
αGε,kG,εr
j (B2),

there exists an element x in Kλε,hεr
i (A) such that

F λε,hλεr(x) = ι
ε,αFλε,r,kF,λεhεr
j (y)

in KαFλε,kFλεhεr
j (B1).
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Completely filtered extension

Definition

Let A be a filtered C∗-algebra. let J be an ideal of A and set
Jr = J ∩Ar. The extension of C∗- algebras

0→ J → A→ A/J → 0

is called a completely filtered extension of C∗- algebras if the
bijection continuous linear map

Ar/Jr → (Ar + J)/J

induced by the inclusion Ar ↪→ A is a complete isometry i.e for any
integer n, any r > 0 and x ∈Mn(Ar),then

inf
y∈Mn(Jr)

‖x+ y‖ = inf
y∈Mn(J)

‖x+ y‖.
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Controlled six term exact sequence

Theorem Oyono-Oyono and G.Yu

There exists a control pair (λ, h) such that for any completely
filtered extensions of C∗-algebras

0→ J
j→ A

q→ A/J → 0,

the following six-term sequence is (λ, h)-exact

K0(J)
j∗ // K0(A)

q∗ // K0(A/J)

DJ,A
��

K1(A/J)

DJ,A

OO

K1(A)
q∗oo K1(J)

j∗oo
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Controlled Roe transformation

For any z ∈ KK1(A,B),then z can be represent by a triple
(HA, π, T ) where:

π : A→ LB(HB) is a ∗-representation of A on HB;

T ∈ LB(HB) is a self-adjoint operator;

[T, π(a)], π(a)[T 2 − IdHB ] are compact operators in
K(HB) ∼= K(H)⊗B

Let P = (1+T
2 ) ∈ LB(HB) and

E(π,T ) = {(a, Pπ(a)P + y) : a ∈ A, y ∈ B ⊗K(H)}

Then we have a semi-split exact extension:

0→ B ⊗K(H)→ E(π,T ) → A→ 0

where the completely positive section is
s : A→ Eπ,T ; a 7→ (a, Pπ(a)P ).
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By the functor property of C∗max(X, ·),then we have a semi-split
exact extension:

0→ C∗max(X,B)→ Eπ,TX,max → C∗max(X,A)→ 0

where Eπ,TX,max = C∗max(X,Eπ,T )

Proposition

The controlled boundary map Dπ,T = D
C∗max(X,B),Eπ,TX,max

of the

extension

0→ C∗max(X,B)→ Eπ,TX,max → C∗max(X,A)→ 0

only depends on the class z.
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Odd case

Let A and B be two C∗-algebra.then there exists a control
pair(αX , kX)such that for any z ∈ KK1(A,B),there exists a
(αX , kX)- controlled morphism

σ̂X,max(z) : K∗(C
∗
max(X,A))→ K∗+1(C∗max(X,B))

Even case

Using Bott periodicity theorem, LetA and B be two
C∗-algebras,for any z ∈ KK0(A,B),there exists a control pair
(αX , kX)and even degree (αX , kX)-controlled morphism

σ̂X,max(z) : K∗(C
∗
max(X,A))→ K∗(C

∗
max(X,B))
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For any positive number d and probability η of the Rips complex
Pd(X) can be written as η =

∑
x∈X λx(η)δx, where δx is the Dirac

probability at x, and λx : Pd(X)→ [0, 1] is a continuous function.
Let

hd :

{
X ×X → C0(Pd(X))

(x, y) 7→ λ
1
2
xλ

1
2
y

Let (ex)x∈X be the canonical basis of l2(X), e be a rank one
projection in H, and Pd be defined as the extension by linearity
and continuity of

Pd(ex ⊗ ξ ⊗ f) =
∑
y∈X

ey ⊗ (eξ)⊗ (h(x, y)f)

for every x ∈ X, ξ ∈ H and f ∈ C0(Pd(X)). As
∑

x∈X λx = 1, Pd
is projection of K(l2(X))⊗ C0(Pd(X)) of propagation less than d.

Hence, Pd define a class [Pd, 0]ε,r′ ∈ Kε,r′

0 (C∗max(X,C0(Pd(X))))
for any ε ∈ (0, 1

4) and r′ ≥ d.
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Quantitative maximal coarse Baum-Connes assembly map

Definition

Let A be a C∗-algebra,ε ∈ (0, 1
4) and positive numbers d, r

satisfying that kX(ε)d ≤ r.The quantitative assembly map

µ̂X,A,max,∗ = (µε,d,rX,A,max,∗)ε,r is defined as the family of maps

µε,d,rX,A,max,∗ :

{
KK∗(C0(Pd(X)), A)→ Kε,r

∗ (C∗max(X,A))

z 7→ ι
αXε

′,ε,kX(ε′)r′,r
∗ ◦ σ̂X,max(z)[Pd, 0]ε′,r′

where ε′ and r′ satisfy:

ε′ ∈ (0, 1
4) such that αXε

′ ≤ ε.
d ≤ r′ such that kX(ε′)r′ ≤ r.



Persistence approximation property for maximal Roe algebras and applications

Introduction

Let KK∗(Pd(X), A) denote KK∗(C0(Pd(X)), A).

Definition

Let A be a G-algebra, We say that:

(Quantitative injectivity) µX,A,max,∗ is quantitative injective if
for any d > 0, there exists ε ∈ (0, 1

4) such that for any r > 0
satisfying kX(ε)d ≤ r, there exists d′ > d such that for any

z ∈ KK∗(Pd(X), A) , µε,d,rX,A,max,∗(z) = 0 implies that

(qd
′
d )∗(z) = 0.

(Quantitative surjectivity) µX,A,max,∗ is quantitative surjective
if there exists ε ∈ (0, 1

4) such that for any r > 0 such that,
there exists ε′ ∈ (ε, 1

4) and positive numbers d, r′ such that
r ≤ r′ and kX(ε′)d ≤ r′, for any y ∈ Kε,r

∗ (C∗max(X,A)) there
exists z ∈ KK∗(Pd(X), A) such that

µε
′,d,r′

X,A,max,∗(z) = ιε,ε
′,r,r′

∗ (y)
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Proposition

Let X be a discrete metric space with bounded geometry and A be
a C∗-algebra.

If µX,A,max,∗ is quantitative injective then µX,A,max,∗ is
one-to-one.

If µX,A,max,∗ is quantitative surjective then µX,A,max,∗ is onto.

Definition

QIX,A,max,∗(d, d
′, ε, r):for any x ∈ KK∗((Pd(X), A), then

µε,d,rX,A,max,∗(x) = 0 implies (qd
′
d )∗(x) = 0 in KK∗(Pd′(X), A)

QSX,A,max,∗(d, ε, ε
′, r, r′) : for any y ∈ Kε,r

∗ (C∗max(X,A),then
there exist a x ∈ KK∗(Pd(X), A)) such that

µε
′,d,r′

X,A,max,∗(x) = ιε,ε
′,r,r′

∗ (y).
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Theorem

Let X be a discrete matric space with bounded geometry and A is
a C∗-algebra. The following are equivalent:

(1) µX,l∞(N,K(H)⊗A),max,∗ is one to one,

(2) For any d > 0, ε ∈ (0, 1
4) and r > 0 with kX(ε)d ≤ r,there

exists d′ such that d ≤ d′ and QIX,A,max,∗(d, d
′, ε, r) holds.

Theorem

Let X be a discrete metric space with bounded geometry and A is
a C∗-algebra. Then there exist λ > 1 such that the following are
equivalent:

(1) µX,l∞(N,K(H)⊗A),max,∗ is onto;

(2) For any positive numbers ε with ε < 1
4λ and r > 0,there exist

d > 0 and r′ > 0 with kX(ε)d ≤ r and r ≤ r′ for which
QSX,A,max,∗(d, r, r

′, ε, λε) is satisfied.
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Corollary

Let X be a discrete metric space with bounded geometry and A is
a C∗-algebra. Then we have the following results:

µX,A,max,∗ is one to one. Then for any ε ∈ (0, 1
4) and every

d > 0, r > 0 such that kX(ε)d ≤ r,there exists d′ with d ≤ d′
such that
QIX,A,max,∗(d, d

′, ε, r) holds.

µX,A,max,∗ is onto. Then for some λ ≥ 1 and any ε ∈ (0, 1
4λ)

and every r > 0, there exists d > 0, r′ > 0 such that
kX(ε)d ≤ r and r ≤ r′ such that QSX,A,max,∗(d, r, r

′, ε, λε)
holds.
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Persistence approximation property

Persistence approximation property was introduced by
Oyono-Oyono and Guoliang Yu. It provides the geometric
obstruction to Baum-Connes conjecture.

Definition

Let B be a filtered C∗-algebra. we sat that K∗(B) has persistence
approximation property if: for any ε ∈ (0, 1

4) and r > 0, there
exists ε′ ∈ (ε, 1

4) and r′ ≥ r such that for any x ∈ K∗(B), then

ιε,ε
′,r,r′

∗ (x) 6= 0 in Kε′,r′
∗ (B) implies that ιε,r∗ (x) 6= 0 in K∗(B).

PA∗(B, ε, ε
′, r, r′): for any x ∈ Kε,r

∗ (B), then ιε,r∗ (x) = 0 in

K∗(B) implies that ιε,ε
′,r,r′

∗ (x) = 0 in Kε′,r′
∗ (B).
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Persistence approximation property for crossed with
groups

Theorem Oyono-Oyono and G.Yu

Let Γ be a finite generated group and A be a C∗-algebra.Assume
that:

µΓ,l∞(N,A⊗K(H)) is onto and µΓ,A is one to one.

Γ admits a cocompact universal example for proper actions.

Then for some universal constant λPA ≥ 1, any ε ∈ (0, 1
4λPA

),any
r > 0, and any Γ-C∗-algebra A there exists r′ ≥ r such that
PA∗(Aored Γ, ε, λPAε, r, r

′) holds.
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Persistence approximation property

Persistence approximation property for crossed product
with groupoids

Theorem Clément Dell’Aiera

Let G be an étale groupoid such that:

G(0) is compact.

G admits a cocompact example for universal space for proper
actions.

Then there exists a universal constant λPA ≥ 1 such that for any
G-algebra A,if µG,l∞(N,A⊗K(H)) is onto and µG,A is one to one,

then for any ε ∈ (0, 1
4λPA

) and every F ∈ E ,there exists a F such
that F ⊆ F ′ and PA∗(Aored G, ε, λPAε, F, F

′) holds.
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Persistence approximation property

For the metric space, we need a condition to replace that the
group(groupoid) admits a cocompact universal example for proper
actions.

Definition

A discrete metric space is coarsely uniformly contractible: if for
every d > 0,there exists d′ ≥ d such that any compact subset of
Pd(X) lies in a contractible invariant compact subset of Pd′(X).

Example 2.5 D.Meintrup and T.Schick

Any discrete hyperbolic metric space is coarsely uniformly
contractible.
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Persistence approximation property

Persistence approximation property for maximal Roe
algebras

Theorem Q.Wang and Z.Wang

Let X be a discrete metric space with bounded geometry and A is
a C∗-algebra. Assume that:

X is coarsely uniformly contractible.

µX,l∞(N,A⊗K(H)),max,∗ is onto and µX,A,max,∗ is one to one

Then there exists a universal constant λPA ≥ 1 such that for any
ε ∈ (0, 1

4λPA
) and every r > 0 ,there exists a r′ > 0 such that

r ≤ r′ and PA∗(C
∗
max(X,A), ε, λPAε, r, r

′) holds.
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Persistence approximation property

Theorem Q.Wang and Z.Wang

Let X be a discrete metric space with bounded geometry. Assume
that X admits a fibred coarse embedding into Hilbert space and X
is coarsely uniformly contractible. then there exists a universal
constant λPA ≥ 1 such that: for any ε ∈ (0, 1

4λPA
) and any r > 0

there exists r′ > r such that PA∗(C
∗
max(X), ε, λPAε, r, r

′) holds.
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Persistence approximation property

Theorem Q.Wang and Z.Wang

Let Γ be a finite generated residually finite group with haagerup
property and admits a cocompact universal example for proper
actions. Then there exists a universal constant λPA ≥ 1 for any
ε ∈ (0, 1

4λPA
) and any r > 0 there exists r′ > r such that

PA∗(C
∗
max(X(Γ)), ε, λPAε, r, r

′) holds.

Example

Both F2 and SL2(Z) are finite generated group with Haagerup
property. Since their classifying space is a tree and this tree is
cocompact. So they admit a cocompact universal example for
proper actions. Hence the maximal Roe algebra of their box space
will have persistence approximation property.
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An application of quantitative K-theory

Let X = (Xi)i∈N be a family of discrete metric space with bounded
geometry and A = (Ai)i∈N be a family of C*-algebras. Denote
C∗max(X,A) be the closure of

⋃
r>0(

∏
i∈NC[Xi, Ai])r of∏

i∈NC
∗
max(Xi, Ai). Then C∗max(X,A) is filtered C*-algebra.

Lemma

There exist a control pair (λ, h) and a (λ, h)-controlled
isomorphism

K∗(C
∗
max(X,A))→

∏
i

K∗(C
∗
max(Xi, Ai)
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An application of quantitative K-theory

Quantitative assembly map for a family of metric space

Definition

For any ε ∈ (0, 1
4) and d, r > 0 with kX(ε) · d ≤ r. Define:

µ∞,ε,d,rX,max,∗ :


∏
i∈N

KK∗(C0(Pd(Xi)),C)→ Kε,r
∗ (C∗max(X))

z 7→ ι
αXε
′,ε,kX(ε′)r′,r

∗ ◦ σ̂∞X,max(z)[P∞d,X, 0]ε′,r′

where ε′ and r′ satisfy:

ε′ ∈ (0, 1
4) such that αX · ε′ ≤ ε;

d ≤ r′ and kX(ε′) · r′ ≤ r.
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An application of quantitative K-theory

Definition

QIX,max,∗(d, d
′, r, ε): for any x ∈

∏
i∈NKK∗(Pd(Xi),C),

then µ∞,ε,d,rX,max,∗(x) = 0 implies (qd
′
d )∗(x) = 0 in∏

i∈NKK∗(Pd(Xi),C)

QSX,max,∗(d, r, r
′, ε, ε′): for any y ∈ Kε,r

∗ (C∗max(X)), there
exists x ∈

∏
i∈NKK∗(Pd(Xi),C) such that

µ∞,ε
′,d,r′

X,max,∗ (x) = ιε,ε
′,r,r′

∗ (y)

Let Σ =
⊔
i∈NXi, where (Xi)i∈N is a family of metric space

satisfying: for any r > 0, there exists an integer Nr such that for
any integer i, any ball of radius r in Xi is no more than Nr

elements.
The metric d on Σ is defined to be:

on each Xi, the metric is just the usual metric on Xi;

d(Xi, Xj) ≥ i+ j if i 6= j.
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An application of quantitative K-theory

Theorem Q.Wang and Z.Wang

Let X = (Xi)i∈N be a family of discrete metric space with bounded
geometry.Let Σ =

⊔
i∈NXi defined as before. Assume that:

for any ε ∈ (0, 1
4) and positive numbers such that

αX(ε) · d ≤ r, there exists d′ with d ≤ d′, such that
QIX,max,∗(d, d

′, ε, r) is holds.

For some λ > 1 and any ε ∈ (0, 1
4λ), r > 0, there exists

d > 0, r′ > r with αX(ε) · d ≤ r′ such that
QSX,max,∗(d, r, r

′, ε, λε).

Then Σ satisfies the maximal coarse Baum-Connes conjecture.
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Thank you

Thank you !
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