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∂u
∂t

= ∆u + f ,

u(x, 0) = u0(x).
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Omega Limit Set



Concept

For a fuction u(·, t) : X → R with u(·, 0) = u0, the so called

ω-limit set ω(u0) is defined as follows

ω(u0) ≡ {ϕ ∈ X; ∃tn → ∞ such that u(·, tn)→ ϕ in X}.



Examples:

1. If u(·, t) = e−t, then

ω(u0) = {0};

2. If u(·, t) = sin t, then

ω(u0) = [−1, 1];

3. If u(·, t) = t sin t, then

ω(u0) = (−∞,+∞) ≡ R.



ω-Limit Set with Single Point



ω-Limit Set with Single Point

Consider the special case

∂u
∂t

= ∆u, x ∈ RN , t > 0,

u(x, 0) = 0, x ∈ RN ,

which has only trivial solution u(x, t) ≡ 0. So,

ω(0) = {0}.



ω-Limit Set with Single Point

With a “small” perturbation u0(x), we further consider the prob-

lem

∂u
∂t
− ∆u = 0, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x), x ∈ RN .

Then the solution decays to zero, namely

lim
t→∞

u(x, t) = 0 uniformaly.

So,

ω(u0) = {0}.



ω-Limit Set with Single Point

Indeed, if 0 ≤ u0 ∈ L1(RN) , then for some α > 0

u(x, t) ≤ Ct−α, t > 0,

and the best decay exponent

α0 =
N
2
,

namely

u(x, t) ≤ Ct−N/2, t > 0.
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ω-Limit Set with Single Point

Notice that

u(x, t) ≤ Ct−N/2, t > 0

implies

0 ≤ tN/2u(x, t) ≤ C, t > 0.

To understand a better asymptotic behaviour, we should discuss the

asymptotic behaviour of

tN/2u(x, t)

as t goes to infinity.



ω-Limit Set with Single Point

In fact, we have

lim
t→∞
‖t

N
2 u(·, t) − GM(·, 1)‖∞ = 0,

where M is the integral of the initial value u0 and

GM(x, t) = M(4πt)−
N
2 exp

(
−
|x|2

4t

)
.



ω-Limit Set with Single Point

It should be noticed that the condition 0 ≤ u0 ∈ L1(RN) is not

a necessary one for insuring the decay of solutions. In fact, if 0 ≤

u0 ∈ L1(RN) and

u0(x) ∼
1
|x|σ

, x→ ∞,

then σ > N. However, we need only to restrict σ to be a positive

number

σ > 0,

due to an early work by Zhao.



ω-Limit Set with Single Point

R J. N. Zhao, The asymptotic behaviour of solutions of a

quasilinear degenerate parabolic equation, J. Diff. Eqns. 102(1993),

33–52.

Zhao consider another working space for u0:

Wσ(RN) ≡ {ϕ ∈ L1
loc(RN); | · |σϕ ∈ L∞(RN)}.



ω-Limit Set with Single Point

He showed that if 0 < σ < N and the nonnegative initial value

u0 ∈ Wσ(RN) with

lim
|x|→∞

|x|σu0(x) = A,

then the solution satisfies

lim
t→∞

u(x, t) = 0,

and so

ω(u0) = {0}.



ω-Limit Set with Single Point

We can also get the best decay estimate

0 ≤ u(x, t) ≤ Ct−σ/2, t > 0.

Furthermore, we have

lim
t→∞

sup
{|x|≤Ct1/2}

tσ/2|u(x, t) −WA(x, t)| = 0,

where WA(x, t) is the solution of the heat equation with the initial

value

u0(x) = A|x|−σ.



ω-Limit Set with Single Point
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A Nonlinear Case

Consider bounded solutions of the heat equation with sources

∂u
∂t
− ∆u = f (u). (1)

If u0 ∈ X = W1,∞
0 (Ω), f (s) is strictly convex with f (0) = 0 and f ′(0) <

λ1, then the ω-limit set ω(u0) contains only stationary solution.

R Lions, P. L., Asymptotic behavior of some

nonlinear heat equations, Nonlinear phenomena,

Physica D, 5(1982), 293–306.



ω-Limit Set with More Points



ω-Limit Sets with More Points

We turn the case for omega limit set with more points.

R Vázquez J. L. and Zuazua E., Complexity of large time

behaviour of evolution equations with bounded data, Chin. Ann.

Math. Ser. B, 23(2002), 293–310.

They investigate the complexity of

rescaled solutions v(x, t) ≡ u(t1/2x, t)

ISêÆ[�¬Ì��w<

ISgÄ��éÜ¬ÌR



ω-Limit Sets with More Points

They showed that if the nonnegative initial value u0 ∈ L∞(RN),

then the ω-limit set may contain infinite number of points.



ω-Limit Sets with More Points

For further investigation, they introduce the concept of omega

limit set for initial data, namely

Ω(u0) ≡ {f ∈ L∞(RN);∃λn → ∞ s. t. u0(λn·)
?
⇀ f in L∞(RN)}.



ω-Limit Sets with More Points

To express their new results, they use the semigroup associ-

ated with the heat operator. For this purpose, we rewrite the heat

equation into
1
u
∂u
∂t

= ∆,

that is
∂ ln u
∂t

= ∆.

So,

ln u = t∆ + C.

Taking t = 0, we get C = ln u0. Therefore

u(x, t) = et∆u0 ≡ S(t)u0.

S(t) is the semigoup associate with the heat operator.



ω-Limit Sets with More Points

They prove that

ω(v(x, 1)) = S(1)Ω(u0),

where

v(x, t) ≡ u(t1/2x, t).



ω-Limit Sets

Some relevant works about the study of the ω-limit sets can be

found in several papers, for example

R T. Cazenave, F. Dickstein and F.B. Weissler, Universal so-

lutions of the heat equation on RN . Discrete Contin. Dyn. Sys.

9(2003), 1105-1132.

R T. Cazenave, F. Dickstein and F.B. Weissler, Universal so-

lutions of a nonlinear heat equation on RN , Ann. Scuola Norm. Sup.

Pisa Cl. Sci. 5(2003) 77–117.

R T. Cazenave, F. Dickstein and F.B. Weissler, Chaotic be-

havior of solutions of the Navier-Stokes system in RN , Adv. Differ.

Equations 10(2005) 361–398.



ω-Limit Sets

R T. Cazenave, F. Dickstein and F.B. Weissler, Nonparabolic

asymptotic limits of solutions of the heat equation on RN , J. Dyn.

Differ. Equations 19(2007) 789–818.

R J.X. Yin, L.W. Wang and R. Huang, Complexity of asymp-

totic behavior of Solutions for the porous medium equation with Ab-

sorption, Acta Mathematica Scientia 30B(6)(2010) 1865–1880.

R J.X. Yin, L.W. Wang and R. Huang, Complexity of asymp-

totic behavior of the porous medium equation in RN , J. Evol. Equ.

11(2011) 429–455.



Chaotic Properties



Dynamical Properties— Transitive

A continuous map F : X → X is called transitive , if for all non-

empty open subsets U and V of X, there exists a natural number k

such that

Fk(U) ∩ V , ∅.

U

V

F(U)

Fk−1(U)
Fk(U)
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Dynamical Properties— Sensitive Dependence

A map F : X → X is called to have the property of sensitive

dependence on initial conditions if there is a δ > 0 such that for

every point x ∈ X and every neighborhood Ω of x, there exists a

point y ∈ Ω and a nonnegative integer k such that

dist(Fk(x),Fk(y)) > δ.

x
ε y

sensitive point

Fk(x)

Fk(y)
δ
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Dynamical Properties— Periodic Point

For the map F : X → X, a point x ∈ X is said to be a point of period k

for F, if Fk(x) = x and Fi(x) , x for all 0 < i < k.

x = Fk(x)

F(x)

Fk−1(x)



Dynamical Properties

Definition (Devaney’s Definition of Chaos)

Let (X, d) be a metric space. A continuous map F : X → X is

said to be chaotic on X if

1. F is transitive;

2. The periodic points of F are dense in X;

3. F has sensitive dependence on initial conditions.



Finding a Map with Dynamical Properties
Remember that

Wσ(RN) ≡ {ϕ ∈ L1
loc(RN); | · |σϕ ∈ L∞(RN)}.

Let us construct a chaotic map. Let M > 0, λ > 1. Define

Bσ,+M ≡ {ϕ ∈ Wσ(RN); ‖ϕ‖Wσ(RN ) ≤ M and ϕ ≥ 0}.

Consider the map Fσ
λ : S(1)Bσ,+M 7→ S(1)Bσ,+M defined by

Fσ
λ = Dσ

λ S(λ − 1) = S(1 −
1
λ

)Dσ
λ ,

where S(t) is the semigroup operator, and Dσ
λ is defined by

Dσ
λϕ(x) = λσ/2ϕ(λ1/2x).



A Chaotic Map

Theorem

For any fixed λ > 1, the map

Fσ
λ : S(1)Bσ,+M 7→ S(1)Bσ,+M ,

is chaotic.



Periodic Solutions



Periodic Solutions

Consider the special periodic problem

∂u
∂t

= ∆u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω,

u(x, t + T) = u(x, t).

This problem has only trivial solution u(x, t) ≡ 0.



∂u
∂t

= ∆u.

In fact, multiplying the equation by u and integrating over Q =

Ω × (0,T), we have

1
2

"
Q

∂

∂t
(u2)dxdt +

"
Q
|∇u|2dxdt = 0.

Due to the periodicity, the first term is zero. Therefore"
Q
|∇u|2dxdt = 0,

which implies that u(x, t) ≡ 0.



Periodic Solutions

Consider the special periodic problem

∂u
∂t

= ∆u + m(t)up, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω,

u(x, t + T) = u(x, t).

This problem has only a trivial solution u(x, t) ≡ 0.



The Linear Case (1)

T. I. Seidman, Periodic solutions of a non-linear parabolic equation, J.

Differential Equations, 19(1975), 242–257.

Seidman studied the related special case

∂u
∂t

= ∆u + m(t), (x, t) ∈ Ω × R,

u(x, t) = 0, x ∈ ∂Ω,

u(x, t + T) = u(x, t).

He established the existence of nontrivial periodic solutions for any

m(t) . 0.



The Linear Case (2)

A. Beltramo, P. Hess, On the principal eigenvalue of a periodic-parabolic

operator, Comm. Partial Differential Equations, 9(1984), 919–941.

Beltramo and Hess considered the linear source case

∂u
∂t

= ∆u + m(t)u, (x, t) ∈ Ω × R,

u(x, t) = 0, x ∈ ∂Ω,

u(x, t + T) = u(x, t),

and showed that only for some special m(t) can the equation have

nontrivial periodic solutions.



The Nonlinear Case

The pioneering works for the nonlinear case are the following

M. J. Esteban, On periodic solutions of superlinear parabolic prob-

lems, Trans. Amer. Math. Soc., 293(1986), 171–189.

M. J. Esteban, A remark on the existence of positive periodic so-

lutions of superlinear parabolic problems, Proc. Amer. Math. Soc.,

102(1988), 131–136.

Maria J. Esteban, from 2015 to 2019, president

of International Council for Industrial and Ap-

plied Mathematics.



The Nonlinear Case (1)
M. J. Esteban, On periodic solutions of superlinear parabolic problems,

Trans. Amer. Math. Soc., 293(1986), 171–189.

It was Esteban who first consider the nolinear source case

∂u
∂t

= ∆u + m(t)up, (x, t) ∈ Ω × R,

u(x, t) = 0, x ∈ ∂Ω,

u(x, t + T) = u(x, t),

where 1 < p < pc with pc being the Fujita exponent for the equation

with RN instead of Ω, namely

pc ≡ 1 +
2
N
.

She established the existence of nontrivial periodic solutions.

Main approaches: using the blow-up technique.

p
p0 pFujita

(1966)

pSerrin

(2002)

pSobolev
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The Nonlinear Case (2)

M. J. Esteban, A remark on the existence of positive periodic solutions

of superlinear parabolic problems, Proc. Amer. Math. Soc., 102(1988),

131–136.

Two years later, Esteban extend the result to

1 < p < 2∗ ≡
N

N − 2
.

Here 2∗ is the well-known Serrin exponent.

Main approaches: based on Liouville type results.

p
p0 pFujita

(1966)

pSerrin

(2002)

pSobolev
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The Nonlinear Case (3)

S. I. Pohozaev, Eigenfunctions of the equation ∆u + λf (u) = 0, Soviet

Math. Dokl., 5(1965), 1408–1411.

Non-existence result for

q ≥ 2∗ − 1 ≡
N + 2
N − 2

with Ω beging the star-shape domain, can be proved by the Po-

hozaev identity. Here 2∗ is the well-known Sobolev exponent.

p
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The Nonlinear Case (4)

P. Quittner, Multiple equilibria, periodic solutions and a priori bounds for

solutions in superlinear parabolic problems, Nonlinear Differential Equa-

tions Appl., 11(2004), 237–258.

About 16 years later, the gap 2∗ ≤ p < 2∗ − 1 was partially

filled by Quittner (2004), in which he proved the existence with some

restrictions on the structure of m(t)

sup
t∈(0,ω)

(m′(t))−

m(t)
<

2N − (N − 2)(q + 1)
r2(Ω)

,

where r(Ω) is the radius of Ω.

Main approaches: dynamical method, topological degree argu-

ment, . . .

p
p0 pFujita

(1966)

pSerrin

(2002)

pSobolev



The Nonlinear Case (4)

P. Quittner, Multiple equilibria, periodic solutions and a priori bounds for

solutions in superlinear parabolic problems, Nonlinear Differential Equa-

tions Appl., 11(2004), 237–258.

About 16 years later, the gap 2∗ ≤ p < 2∗ − 1 was partially

filled by Quittner (2004), in which he proved the existence with some

restrictions on the structure of m(t)

sup
t∈(0,ω)

(m′(t))−

m(t)
<

2N − (N − 2)(q + 1)
r2(Ω)

,

where r(Ω) is the radius of Ω.

Main approaches: dynamical method, topological degree argu-

ment, . . .

p
p0 pFujita

(1966)

pSerrin

(2002)

pSobolev



Our Result

J. X. Yin, C. H. Jin, Periodic solutions of the evolutionary p-Laplacian with

nonlinear sources, J. Math. Anal. Appl., 368(2010), 604–622.

H. C. Wang, J. X. Yin, C. H. Jin, A Note on the Existence of Time Periodic

Solution of a Superlinear Heat Equation, Appl. Anal., 2018, Accepted.

Using a new rescalling technique and topological degree argu-

ments, we remove the restriction on m(t), in 2010, when the domain

Ω is convex; while in 2018, we finally solve the existence problem

without the convexity of Ω.

p
p0 pFujita
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pSobolev
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Small Perturbation



Perturbation

Let us return again to the special case

∂u
∂t

= ∆u, x ∈ RN , t > 0,

u(x, 0) = 0, x ∈ RN ,

which has only trivial solution u(x, t) ≡ 0. It is interesting to discuss

the perturbations, including those for initial data, innner sources,

etc.



Perturbation

We already talked about the small perturbation for initial data

u0(x)

∂u
∂t
− ∆u = 0, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x), x ∈ RN ,

which is stable, since

lim
t→∞

u(x, t) = 0 uniformaly.



Perturbation

While if we consider the perturbation as inhomogeneity f (x) ≥ 0

with f (x) . 0:

∂u
∂t

= ∆u + f (x), x ∈ RN , t > 0,

u(x, 0) = 0, x ∈ RN ,

then the solution does definitely not decay to zero, whatever f (x) is

small enough.



Perturbation

Now, we turn to the nonlinear perturbation
∂u
∂t

= ∆u + λup, x ∈ RN , t > 0,

u(x, 0) = 0, x ∈ RN ,

where λ is a small positive constant. Clearly, such a problem admits

only trivial solution u(x, t) ≡ 0, if p ≥ 1.

However, if 0 < p < 1, then, in addition to the trivial solution,

there exist at least one non-trivial solution. For example, a solution

independent of x:

u(x, t) =
[
(1 − p)λt

]1/(1−p) ,

which satisfies

lim
t→∞

u(x, t) = +∞.
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u(x, t) =
[
(1 − p)λt

]1/(1−p) ,

which satisfies

lim
t→∞

u(x, t) = +∞.



Perturbation

With an additional small perturbation u0(x), we further consider

the problem

∂u
∂t

= ∆u + λup, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x), x ∈ RN .

Then a completely different phenomenon accurs, namely for any

p ∈
(
1, 1 +

2
N

)
,

all non-trivial solutions blow up in finite time.

1966



Perturbation

Moreover, if we consider the perturbation as inhomogeneity,

namely
∂u
∂t

= ∆u + λup + f (x), (x, t) ∈ RN × (0,∞),

u(x, 0) = 0, x ∈ RN .

Then another different phenomenon accurs, namely for any

p ∈
(
1, 1 +

2
N − 2

)
, N ≥ 3

all non-trivial solutions blow up in finite time.

R C. Bandle, H. A. Levine and Q. S. Zhang, Critical expo-

nents of Fujita type for inhomogeneous parabolic equations and

systems, J. Math. Anal. Appl., 251(2000), 624–648.



Perturbation

Now, we consider an additional pseudo-parabolic perturbation

∂u
∂t
− k

∂∆u
∂t

= ∆u + up, x ∈ RN , t > 0.

u(x, 0) = u0(x), x ∈ RN .

Nolinear SourceViscosity 2005



Perturbation

R E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, The

Cauchy problem for a Sobolev type equation with power like non-

linearity, Izv. Math., 69(1)(2005), 59–111.

p > 1 =⇒ local existence of mild solutions

p > 1 +
2
N

=⇒ global existence of mild solutions

for small initial data



Perturbation

As for the special case p = 1, we refer to the early work

R Showalter, R. E. and Ting, T. W., Pseudoparabolic partial

differential equations, SIAM J. Math. Anal., 1(1)(1970), 1–26.

p = 1 =⇒ global existence of classical solutions

for any initial data

The case 0 < p < 1 was not discussed by Kaikina.



Perturbation

With Kaikina’s results, it is reasonable to guess that there exist

two exponents, the global existence exponent p0 and Fujita expo-

nent pc as follows

p0 = 1, pc = 1 +
2
N
.



Perturbation

In other words, we conclude the following

0 < p < 1 =⇒ global existence of classical solutions

1 < p < 1 + 2/N =⇒ Blow-up of weak solutions

for any nontrivial initial data

p > 1 + 2/N =⇒ Blow-up of weak solutions for large initial data

p = 1 + 2/N =⇒ Blow-up of weak solutions

for any nontrivial initial data



Perturbation

Another perturbation is

∂u
∂t
− k

∂∆u
∂t

= ∆u + λup + f (x), x ∈ RN , t > 0,

u(x, 0) = 0, x ∈ RN ,

where p > 0, k > 0, λ > 0, f (x) ≥ 0 is a small nontrivial perturbation

with f (x) . 0.

Nolinear Source
Viscosity

Given Source



Perturbation

We conclude the following

0 < p < 1 =⇒ global existence of classical solutions

1 < p < 1 + 2/(N − 2) =⇒ Blow-up of weak solutions

for any nontrivial initial data

p > 1 + 2/(N − 2) =⇒ Blow-up of weak solutions

for large initial data

p = 1 + 2/(N − 2) =⇒ Blow-up of weak solutions

for any nontrivial initial data



Life Span



The Trivial Case
For spatial homogeneous case, namely

∂u
∂t

= |u|p−1u, (x, t) ∈ RN × (0,+∞),

u(x, 0) = λ, x ∈ RN ,
(2)

the solution can be given explicitly

u(x, t) =


(
λ1−p − (p − 1)t

)1/(p−1)
, p , 1,

λet, p = 1.
(3)

So, the solution blows up in finite time if and only if p > 1, and the

blow-up time is given by

Tλ =
λ1−p

p − 1
.



Scaling

One of the topics in discussing the life span is to scale the

initial datum with a parameter, namely by considering the following

problem 
∂u
∂t

= ∆u + |u|p−1u, (x, t) ∈ RN × (0,+∞),

u(x, 0) = λu0(x), x ∈ RN .
(4)

Let us denote the solution as u(x, t; λ) and the blow-up time of u(x, t; λ)

as Tλ. The values of u0 near∞ have a closed relation to the blow-up

time, which can be viewed from several works.



Scaling

R Tzong-Yow Lee and Wei-Ming Ni, Global existence, large

time behavior and life span of solutions of a semilinear parabolic

Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), no. 1, 365–

378.

Lee and Ni showed that, if there exist C1,C2 > 0 and R > 0

such that

C1 ≤ u0(x) ≤ C2, |x| > R,

then there exist C3,C4 > 0 and Λ > 0 such that

C3 ≤ λ
p−1Tλ ≤ C4 for λ < Λ. (5)



Scaling

R Changfeng Gui and Xuefeng Wang, Life spans of solutions

of the Cauchy problem for a semilinear heat equation, J. Differential

Equations 115 (1995), no. 1, 166–172.

Further, Gui and Wang proved that if

lim
|x|→∞

u0(x) = A > 0,

then

lim
λ→0

λp−1Tλ =
1

p − 1
A1−p. (6)



Lower Bound Estimate on T∗

R Giga, Yoshikazu and Umeda, Noriaki, Blow-up directions

at space infinity for solutions of semilinear heat equations, Bol. Soc.

Parana. Mat., (3) 23(1-2)(2005), 9–28.

It is shown that, by Giga and Umeda, for any solution u, with

initial datum u0 ∈ L∞(RN),

T∗ ≥
1

p − 1
‖u0‖

1−p
L∞(RN ),

which can not be improved, since in the trivial case u0(x) ≡ λ,

T∗ =
λ1−p

p − 1
.



Upper Bound Estimate on T∗

Since the lower bound estimate has already been established

by Giga and Umeda, many papers are devoted to the upper bound

estimate on T∗.

R Masaki Yamaguchi and Yusuke Yamauchi, Life span of

positive solutions for a semilinear heat equation with non-decaying

initial data, Differential Integral Equations 23 (2010), no. 11-12, 1151–

1157.

Yamaguchi and Yamauchi established a uppper bound esti-

mate for the life span for N = 1, namely, if lim
x→±∞

u0(x) = A±, then

T∗ ≤
1

p − 1

(A+ + A−
2

)1−p
. (7)



Upper Bound Estimate on T∗

R Tohru Ozawa and Yusuke Yamauchi, Life span of positive

solutions for a semilinear heat equation with general non-decaying

initial data, J. Math. Anal. Appl. 379 (2011), no. 2, 518–523.

Ozawa and Yamauchi considered the multi-dimensional case.

Let N ≥ 2. Assume that lim inf
r→∞

u0(rx) = u∞(x) with u∞ ∈ L∞(SN−1)

for any x ∈ SN−1 and that
∫

SN−1 u∞(x′) dσ(x′) > 0, where σ is the

surface measure on the unit sphere. Then

T∗ ≤
1

p − 1

(
1

σ(SN−1)

∫
SN−1

u∞(x′) dσ(x′)
)1−p

. (8)



Upper Bound Estimate on T∗

R Yusuke Yamauchi, Life span of solutions for a semilinear

heat equation with initial data having positive limit inferior at infinity,

Nonlinear Anal. 74 (2011), no. 15, 5008–5014.

For ξ′ ∈ SN−1 and δ ∈ (0,
√

2), we set conic neighbourhood

Γξ′(δ):

Γξ′(δ) = {η ∈ RN \ {0} |
∣∣∣ξ′ − η

|η|

∣∣∣ < δ},
and set

Sξ′(δ) = Γξ′(δ) ∩ SN−1. (9)

Define

u∞(x′) = lim inf
r→+∞

u(rx′) for x′ ∈ SN−1.



Upper Bound Estimate on T∗

Let N ≥ 2. Assume that there exist ξ′ ∈ SN−1 and δ > 0 such

that essinf
x′∈Sξ′ (δ)

u∞(x′) > 0. Then the classical solution for (??) blows up

in finite time, and the blow-up time is estimated as

T∗ ≤
1

p − 1

(
essinf
x′∈Sξ′ (δ)

u∞(x′)
)1−p

. (10)

Let N = 1. Assume that max{lim inf
x→+∞

u0(x), lim inf
x→−∞

u0(x)} > 0.

Then the classical solution for (??) blows up in finite time, and the

blow-up time is estimated as

T∗ ≤
1

p − 1

(
max{lim inf

x→+∞
u0(x), lim inf

x→−∞
u0(x)}

)1−p
. (11)



Rarefaction Point

A point x0 is called to be a rarefaction point of the set E if

lim
r→0

mes
(
B(x0, r) ∩ E

)
mes

(
B(x0, r)

) = 0,

where mes(F) is the Lebesgue measure of the set F, and B(x, r) is

the ball centered at x with radius r. It is reasonable to say that ∞ is

a rarefaction point of the set E if

lim
r→+∞

mes
(
B(0, r) ∩ E

)
mes

(
B(0, r)

) = 0.

Alternatively, ∞ is called to be a rarefaction point of a non-

negative function ϕ(x) if for any α > 0 it is a point of rarefaction of

the set {x | ϕ(x) ≥ α}.



Upper Bound Estimate on T∗

Theorem 1

If ∞ is not a rarefaction point of the initial datum u0(x), then the

solution blows up in finite time T∗ with

T∗ ≤
1

p − 1
inf
α>0

(
αD(α)

)1−p
, (12)

where

D(α) ≡ lim sup
r→+∞

mes
(
{x | u0(x) ≥ α} ∩ B(0, r)

)
mes

(
B(0, r)

) . (13)



=⇒ Gui andWang’s result

If lim
|x|→∞

u0(x) = A > 0, then

D(α) =

 1, α < A,

0, α > A,

which, together with the lower bound estimate, implies that

lim
λ→0

λp−1Tλ =
1

p − 1
A1−p, (14)

namely, the same result as did by Gui and Wang.

R Changfeng Gui and Xuefeng Wang, Life spans of solutions

of the Cauchy problem for a semilinear heat equation, J. Differential

Equations 115 (1995), no. 1, 166–172.

supα
D(α) =

A



=⇒ Lee and Ni’s result

Since D(α) is related to the initial datum u0(x), let us write

D(α) = D(α; u0). Clearly

D(α; λu0) ≡ D(α/λ; u0).

So, if the initial datum is replaced by λu0(x), then

sup
α>0

αD(α; λu0) = λ sup
α>0

α

λ
D(α/λ; u0) = λ sup

β>0
βD(β; u0),

which implies Lee and Ni’s result

C3 ≤ λ
p−1Tλ ≤ C4.

R Tzong-Yow Lee and Wei-Ming Ni, Global existence, large

time behavior and life span of solutions of a semilinear parabolic

Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), no. 1, 365–

378.



Upper Bound Estimate on T∗

We do not want to give a proof for Theorem 1, but prefer to

state a much general version. For this purpose, let α, r > 0 and

denote

D(α; r) ≡ sup
x∈RN

mes
(
B(x, r) ∩ {y | u0(y) ≥ α}

)
mes

(
B(x, r)

) ,

and define

D(α) := lim sup
r→+∞

D(α; r). (15)



Upper Bound Estimate on T∗

Theorem 2

Suppose that there exists α > 0 such that D(α) > 0. Then the

solution blows up in finite time T∗ with

T∗ ≤
1

p − 1
inf
α>0

(
αD(α)

)1−p
. (16)



=⇒ Yamauchi’s result

Our theorem implies the results by Yamauchi 2011. First, let us

look at the one-dimensional case.

Theorem (Theorem 2 of Yamauchi 2011)

Let N = 1. Assume that max{lim inf
x→+∞

u0(x), lim inf
x→−∞

u0(x)} > 0.

Then the classical solution blows up in finite time, and the blow-up

time is estimated as

T∗ ≤
1

p − 1

(
max{lim inf

x→+∞
u0(x), lim inf

x→−∞
u0(x)}

)1−p
. (17)

R Tohru Ozawa and Yusuke Yamauchi, Life span of positive solu-

tions for a semilinear heat equation with general non-decaying initial data,

J. Math. Anal. Appl. 379 (2011), no. 2, 518–523.



=⇒ Yamauchi’s result

In fact, let us assume that

A = lim inf
x→+∞

u0(x) ≥ lim inf
x→−∞

u0(x).

Then for any ε > 0 there exists R > 0 such that u0(x) ≥ A − ε for

x > R. Hence D(A − ε) = 1. By Theorem 2 we obtain

T∗ ≤
1

p − 1
(A − ε)1−p.

Since ε > 0 was arbitrary, it follows T∗ ≤ 1
p−1 A1−p. The proof for

N = 1 is finished.



=⇒ Yamauchi’s result

Theorem (Theorem 1 of Yamauchi 2011)

Let N ≥ 2. Assume that there exist ξ′ ∈ SN−1 and δ > 0 such

that essinf
x′∈Sξ′ (δ)

u∞(x′) > 0. Then the classical solution for (??) blows up

in finite time, and the blow-up time is estimated as

T∗ ≤
1

p − 1

(
essinf
x′∈Sξ′ (δ)

u∞(x′)
)1−p

. (18)



=⇒ Yamauchi’s result

Let A = essinf
x′∈Sξ′ (δ)

u∞(x′). It is sufficient to show that, for any R > 0,

0 < τ < 1 and 0 < ε < A, there exists a ball B(x, r) with r > R such

that
mes

(
{y | u0(y) ≥ A − ε} ∩ B(x, r)

)
ωNrN > 1 − τ. (19)



=⇒ Yamauchi’s result

First, we show that there exists R1 > 0 such that

σN−1
(
{x′ ∈ SN−1 | u0(rx′) ≥ A − ε for r > R1} ∩ Sξ′(δ)

)
σN−1(Sξ′(δ))

> 1 − τ,

(20)

where σN−1(M) is the spherical measure for the measurable set

M ⊂ SN−1 and Sξ′(δ) is defined by (9).

Next, we show that there exists a ball B(x0, r0) such that

B(x0, r0) ⊂ {x ∈ RN | R1 < |x| < R1 + 1 and
x
|x|
∈ Sξ′(δ)}, (21)

and
mes

(
{x ∈ B(x0, r0) | x

|x| ∈ S(R1)}
)

mes
(
B(x0, r0)

) ≥ 1 − τ. (22)



=⇒ Yamauchi’s result

Finally, we complete the proof by scaling the ball B(x0, r0). We

claim that for λ > 1, it follows that

mes
(
{y ∈ RN | u0(y) ≥ A − ε} ∩ B(λx0, λr0)

)
mes

(
B(λx0, λr0)

)
≥

mes
(
{x ∈ B(x0, r0) |

x
|x|
∈ S(R1)}

)
mes

(
B(x0, r0)

) .



Optimality of our result

The upper bound in our result is optimal. For this purpose, let

us consider an example. Let ak = k!, 0 < ε < 1 and set

u0(x) =


ε, |x| ∈ [a2k−1 +

1
4
, a2k −

1
4

],

1, |x| ∈ [a2k, a2k+1].

By the definition of D(α), we have

D(1) ≥ lim sup
k→+∞

mes
(
{x | u0(x) ≥ 1} ∩ B(0, a2k+1)

)
mes

(
B(0, a2k+1)

)
≥ lim sup

k→+∞

aN
2k+1 − aN

2k

aN
2k+1

= 1.



Optimality of our result

So, the life span T∗ of the solution u can be estimated by

T∗ ≤
1

p − 1
(
1D(1)

)1−p
=

1
p − 1

.

Since v(x, t) =
(
1−(p−1)t

) 1
p−1 , which blows up at T = 1

p−1 , is an upper

solution of (??) with v(x, 0) ≥ u(x, 0), by the comparison principle it

follows that T∗ ≥ T = 1
p−1 . Thus

T∗ =
1

p − 1
,

which shows that the minimal time blow-up occurs for such initial

datum u0(x).



Optimality of our result

Remark

The above example shows that the upper bound estimate is

optimal, since

T∗ =
1

p − 1
.

On the other hand, applying Yamauchi’s result to the above exam-

ple, the estimate is reduced to

T∗ ≤
1

p − 1
ε1−p.

In particular, Yamauchi’s result is inapplicable to the case with ε = 0.



Thank You!


