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By the famous Kodaira’s embedding theorem, we can embed M as a subvariety in some
complex projective space CPN on which the linear group G = SL(N + 1,C) acts.



Using a construction of Chow, Mumford
associates a nonzero vector Ry, referred as
the Chow coordinate, in a vector space V
which has an induced action by G.

M 1s called Chow-Mumford stable if its
Chow coordinate is stable.
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On Calabi’s conjecture for complex surfaces with
positive first Chern class

G. Tian
Schoo] of Mathematics, Institute for Advanced Study, Ponceton, NJ D8340, USA

It s known by classification theory of complex surfaces that
CP?#nCP0 £ n = B)and CP' x CP? are only compact differential 4-manifolds
on which there is & complex strueture with positive first Chern class. In [TY], the
authors proved that for any # between 3 and 8, there is a compact complex surface
M diffeomorphic to CP* # aCP? such that €M) > 0 und M admits a Kihler-
Einstein metric. This paper is the continuation of my joint work with professor
8.T. Yau [TY]. The main result of this paper is the following.

Main theorem. Anp compaet complex surfuce M with C,(M) >0 admits
a Kahler-Einstein metric i Lie {Aut(M)) is reductive.

This theorem solves one of Calabi's conjectures in case of complex surfaces. The
conjecture says that there is a Kédhler-Cinstein metric on any compact Kahler
manifold with positive first Chern ¢lass and without holomorphic vector field. Our
proof of the above theorem is based on a partial C%-estimate of the solutions of
some complex Monge-Ampére equations we wili deveiop in this paper (Theorem
2.2, Theorem 5.1) and the previous work of the author m [T17 and the joint work
with S.T. Yau in [TY].
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Kahler-Einstein metrics
with positive scalar curvature

Gang Tian

Department of Mathematics, Massachuserts Institute of Technology, Cambridge,
MA 021394307, USA (e-mail: tang@gmuth.mit edu)

Oblatum 12-1V-1996 & 8-X1-1996

Abstract. In this paper, we prove that the existence of Kiihler-Einsicin
metrics implies the stability of the underlying Kiihler manifold in a suitable
sense. In particular, (his disproves a long-standing conjecture that a com-
pact Kihler manifold admits Kihler-Einstein metrics if it has positive first
Chern class and no nontrivial holomorphic vector fields. We will also es-
tablish an analytic criterion for the existence of Kihler-Cinstein metries. Our
arguments also yield that the analyue criterion is satisfied on stable Kiihler
manifolds, provided that the partial C'-cstimate posed in [16] is truc.
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K-Stability and Kihler-Einstein Metrics

GANG TIAN
Beifing Universiry
Princeton University

Abstract

fold M is K-stable, then it admits a Kihler-Cinstein
% conjsciare fir Far

‘We prove that if a Fano ma
treiric. 1| aflin o kooga:
ley Periodicaly, I

Contents
1. Tntroduction 1085
2. Smoothing Conic Kithler-Einstem Metrics 1090
3. An Extension of Cheeger-Coldmg-Tian 1096
4. Smooth Convergence 1101
5. Partial ""-Fsomate 1106
6. Proving Theorem 1.1 1120
Appendix A, Proof of Lemma 5.8 1141
Appendix B. A Previous Result of Tian and Wang 1148
Bibliography 1154
1 Introduction

In mm paper, we solve a folklore conecture (it 15 often refered as the Yau-Tian-

}on Fano fo without nontrivial holomorphic vector

fields. The muin echnical mgredient 1s & conic version of Cheeger-Colding-Tun™s
theory on compactness of Kahler-Einstein manifolds. This enables us o prove the
partial € “-estimate for conic Kahler-Finstzin metrics.
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ANALYSIS AND GEOMETIY
Velume 2, Nurober 2, 239-265, 1694

THE K-ENERGY ON HYPERSURFACES AND STABILITY

GANG TIAN

INTRODUCTION

The notion of stability for a polarized projective varicty was introduced
by D. Mumford for the study of the moduli problem of projective varieties.
The stability has been verified by Mumlord lor smooth algchraic curves, D.
Giescker for algebraic surfaces and Viehweg for algebraic manifolds, which
are polarized by m-pluri-canonical bundles for m sufficiently large ([Md], [Gi].
[Vi]). However, it still seems to be a challenging problem to check the stability
for a given polarized varicty, cven if the variety is a singular hypersurface in
some projective space. The purpose of this paper is to give a sufficient and
intrinsic condition for a hypersurface to be stable or semistable. The condition
ig given in lerms of the properness or lower buundedness of a generalized
K-cnergy, which was introduced by T. Mubachi for Kéhler manifolds. In
particular, we will prove that any hypersurface is semistable it it has only
orbifold singularities of codimension at least two and admits a Kahler-Einstein
orbifold metric.

We denote by R, 4 the space of all homogeneous polynomials on €' of
degree d, and B the projective space PR, 4. Any point [f] in B determinates
a unique hypersurface ¥y in CP™*! of degree d. The special linear group
G = SL(n+2,C) induces an action on the vector space R, 4 by assigning f to
foo! for any o in G. Then we say that 3 is stable if the orbit Gf is closed
and the stablier of f in G is finite; we say that X is semistable if the zero
in R, is not contained in the closure of the orbit Gf. It is well-known that
any smooth hypersurface I, is stable. However, if ¥; has only one isolated

This author is partially supported by a NSF grant and an Alfred P. Sloan fellowship.
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Kihler-Einstein metrics and the generalized Futaki
invariant

Weiyue Ding' and Gang Tian**
! Institute of Mathematics, Academia, a, Beijing, China
? Courant Institute of Mathematical Sciences, New York University. New York 10012, USA

Oblatum 14-1-1992 & 11-V-1992

1 Introduction

In 1983, Futaki introduced his famous invariant. This invariant generalizes the
obstruction of Kazdan—Warner to prescribing Gauss curvature on 57 (cf. [Ful]).
The Futaki invariant is defined for any compact Kihler manifold with positive first
Chern class that has nontrivial holomorphic vector fields. It is a Lie algebraic
character from the Lie algebra of holomorphic vector fields into C. and its
vanishing is a necessary condition for the existence of a Kéhler Einstein metric on
the underlying manifoid. Therefore, it can be used to test the existence of Kihler—
Einstein metrics on a given compact Kahier manifold with positive first Chern
class. An excellent reference on the Futaki invariant is Futaki’s book [Fu2].

Until now, all known nontrivial obstructions to Kihler Einstein metrics come
from holomorphic vector fields. This suggests the following conjecture.

Conjecture, If a compact Kdihler manifold with positive first Chern class hus no
nontrivial holomorphic vector fields, then it admits a Kdhler-Einstein metric.

One can also formulate a parallel conjecture for Kihler orbifolds.

In this paper, we will use the jumping of complex structures to produce new
obstructions to the existence of Kéhler—Einstein (or orbifold) metrics. Our obstruc-
tions do not assume that the underlying Kéhler manifold (or orbifold) has non-
trivial holomorphic vector fields, hence, they could lead to counterexamples to the
above conjecture. Indeed, we will see that the conjecture is false for Kihler
orbifolds. Our results also indicate that there might be a connection between the
existence of a Kihler-Einstein metric and Mumlord’s stability of the point in Chow
variety corresponding to the underlying Kihler manifold

Let X be a compact Kéhler manifold with positive first Chern class C,(X).
Kodaira’s embedding Theorem implics that the pluri-anticanonical line bundle
Kx™ is very ample for sufficiently large m > 0, namely, any basis of H°(X, Kx™)

* This author is partially supported by a NSF grant and an Alfred P. Sloan [ellowship
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Other generalizations of Futaki invariant:

e In 2002, Donaldson gave an algebraic definition
of generalized Futaki invariant which works for
any polarized varieties. If M is smooth, it
follows from the equivariant index theorem that
this definition coincides with the Futaki invariant.

e In 2008, S. Paul gave another algebraic formula
of generalized Futaki invariant in terms of Chow

coordinate and hyperdiscriminant.




e In 1996, I also introduced the notion of CM
line bundle and CM weight which is the first
Chern class of the CM line bundle over
certain compactification of the subgroup.

The CM weight turns out to be more useful
In algebraic geometry as Li and Xu
manifested in 2011.
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K-12E1%: By Kodaira, we can embed M— CPN as a subvariety.

Set G= SL(N + 1,C). For any algebraic subgroup Gg = {o(t) }tec* 0f G, we can
associate a CM-weight w(Gg) which is also equal to the generalized Futaki
invariant defined by Ding-Tian or Donaldson etc..
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Extending Geometric Invariant Theory:

Let V and W be two representations of G.
Givena pairv € V/{0}and w € W /{0} we say
the pair (v, w) Is semistable if

Glv, w] N G[O,w] = D inP(V®W).



If W = C, w = 1 be the trivial 1-
dimensional representation of G. Then
(v, 1) is semistable if and only if O is not
In the closure of the orbit Gv. In other
words, v is semistable in the usual
sense of Geometric Invariant Theory.



K-stability fits well in the
frame of the extended GIT:

For each M embedded in CPN , S. Paul
associates the hyperdiscriminant Ay and
the Chow coordinate Ry, . They lie in two
vector spaces V and W on which G acts
naturally.



Paul showed that M being K-semistable
IS equivalent to the semistability of the

pair (Am, Rwm).

In some sense, as vector bundles verses
K-theory, stability of pairs corresponds to
the GIT for the representation of G on the
difference V —W.
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