## On Sums of Powers

Shou-Wu Zhang

Sichuan University

June 7, 2018

```
Sum of powers
    Euler
        Dirichlet
        Riemann
    20th century
```

Sum of powers up to 100 Sum of powers up to $n$
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Sum of powers up to 100

## Sum of powers

 EulerDirichlet
Riemann
20th century

Sum of powers up to 100 Sum of powers up to $n$ General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulit's proof
Sum of negative powers up to 100

## Sum of powers up to 100

## Question

For a positive integer $k$, what is the sum

$$
1^{k}+2^{k}+3^{k}+\cdots+100^{k} ?
$$

## Sum of powers

Euler
Dirichlet
Riemann
20th century

Sum of powers up to 100 Sum of powers up to $n$ General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Sum of powers up to 100

## Question

For a positive integer $k$, what is the sum

$$
1^{k}+2^{k}+3^{k}+\cdots+100^{k} ?
$$

$\underbrace{1+1 \cdots+1}_{100 \text { times }}=100$

## Sum of powers

Euler
Dirichlet
Riemann
20th century

Sum of powers up to 100 Sum of powers up to $n$ General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Sum of powers up to 100

## Question

For a positive integer $k$, what is the sum

$$
1^{k}+2^{k}+3^{k}+\cdots+100^{k} ?
$$

$\underbrace{1+1 \cdots+1}_{100 \text { times }}=100$
$1+2+3+\cdots+100=5050$

Sum of powers up to 100 Sum of powers up to $n$ General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Sum of powers up to 100

## Question

For a positive integer $k$, what is the sum

$$
1^{k}+2^{k}+3^{k}+\cdots+100^{k} ?
$$

$\underbrace{1+1 \cdots+1}_{100 \text { times }}=100$
$1+2+3+\cdots+100=5050$
$1^{2}+2^{2}+\cdots+100^{2}=338350$

Sum of powers
Euler
Dirichlet
Riemann
20th century

Sum of powers up to 100 Sum of powers up to $n$ General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Sum of powers up to 100

## Question

For a positive integer $k$, what is the sum

$$
1^{k}+2^{k}+3^{k}+\cdots+100^{k} ?
$$

$\underbrace{1+1 \cdots+1}_{100 \text { times }}=100$
$1+2+3+\cdots+100=5050$
$1^{2}+2^{2}+\cdots+100^{2}=338350$
$1^{3}+2^{3}+\cdots+100^{3}=25502500$

## Sum of powers

 Euler DirichletRiemann
20th century

Sum of powers up to 100 Sum of powers up to $n$ General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Sum of powers up to $n$

## Question

For positive integer $k$ and $n$, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

## Sum of powers up to $n$

## Question

For positive integer $k$ and $n$, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=\underbrace{1+1+\cdots+1}_{n \text { times }}=n, \quad$ Definition

## Sum of powers up to $n$

## Question

For positive integer $k$ and $n$, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=\underbrace{1+1+\cdots+1}=n, \quad$ Definition
$n$ times
$S_{1}(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}, \quad$ Pythagoras $(550 B C)$

## Sum of powers up to $n$

## Question

For positive integer $k$ and $n$, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=\underbrace{1+1+\cdots+1}=n, \quad$ Definition

$$
\begin{aligned}
& S_{1}(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}, \quad \text { Pythagoras }(550 B C) \\
& S_{2}(n)=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \text { Archimed }(250 B C)
\end{aligned}
$$

## Sum of powers up to $n$

## Question

For positive integer $k$ and $n$, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=\underbrace{1+1+\cdots+1}=n, \quad$ Definition

$$
\begin{array}{lc}
S_{1}(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}, & \text { Pythagoras }(550 B C) \\
S_{2}(n)=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, & \quad \text { Archimed }(250 B C) \\
S_{3}(n)=1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}, & \text { Aryabhata }(476 A D)
\end{array}
$$

```
Sum of powers
        Euler
        Dirichlet
        Riemann
    20th century
        Sum of powers up to }10
        Sum of powers up to n
    General formula
    Art of conjecturing (1713)
    Yang Hui - Pascal triangle
    Bernoulli's proof
    Sum of negative powers up to 100
```


## General formula

```
Sum of powers
            Euler
        Dirichlet
        Riemann
    20th century
        Sum of powers up to }10
        Sum of powers up to n
    General formula
    Art of conjecturing (1713)
    Yang Hui - Pascal triangle
    Bernoulli's proof
    Sum of negative powers up to 100
```


## General formula

## General formulae were obtained by Fermat, Pascal, Bernoulli etc:

## General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc: For each $k$, there is a general expression
$1^{k}+2^{k}+3^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}, \quad a_{k i} \in \mathbb{Q}$

## General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc: For each $k$, there is a general expression

$$
1^{k}+2^{k}+3^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}, \quad a_{k i} \in \mathbb{Q}
$$



## General formula

General formulae were obtained by Fermat，Pascal，Bernoulli etc： For each $k$ ，there is a general expression

$$
1^{k}+2^{k}+3^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}, \quad a_{k i} \in \mathbb{Q}
$$




数学归纳法

```
Sum of powers
    Euler
        Dirichlet
        Riemann
    20th century
        Sum of powers up to }10
        Sum of powers up to n
    General formula
    Art of conjecturing (1713)
    Yang Hui - Pascal triangle
    Bernoulli's proof
    Sum of negative powers up to 100
```


## Art of Conjecturing

# Sum of powers Euler <br> <br> Dirichlet <br> <br> Dirichlet <br> Riemann <br> 20th century 

Sum of powers up to 100 Sum of powers up to $n$
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Art of Conjecturing

Jacobi Bernoulli
(1655-1705)

Sum of powers Euler
Dirichlet
Riemann
20th century

```
Sum of powers up to 100
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to }10
```


## Art of Conjecturing



$$
\begin{aligned}
& \text { Bernoulli numbers } B_{j} \text { : } \\
& \frac{z}{e^{z}-1}=\sum_{j=0}^{\infty} B_{j}^{z_{j}^{j}} .
\end{aligned}
$$

Jacobi Bernoulli
(1655-1705)

## Art of Conjecturing



Bernoulli numbers $B_{j}$ : $\frac{z}{e^{z-1}}=\sum_{j=0}^{\infty} B_{j} \frac{Z_{j!}^{j}}{j!}$.

## Jacobi Bernoulli

(1655-1705)

$$
S_{k}(n)=\frac{1}{k+1} \sum_{j=0}^{k}(-1)^{j} C_{j}^{k+1} B_{j} n^{k+1-j}=\frac{(n-B)^{k+1}-(-B)^{k+1}}{k+1} .
$$

```
Sum of powers
    Euler
        Dirichlet
        Riemann
    20th century
        Sum of powers up to }10
        Sum of powers up to n
        General formula
        Art of conjecturing (1713)
        Yang Hui - Pascal triangle
        Bernoulli's proof
        Sum of negative powers up to }10
```


## Yang Hui - Pascal triangle

# Sum of powers Euler <br> Dirichlet <br> Riemann <br> 20th century <br> Sum of powers up to 100 Sum of powers up to $n$ <br> General formula <br> Art of conjecturing (1713) <br> Yang Hui - Pascal triangle <br> Bernoulli's proof <br> Sum of negative powers up to 100 

## Yang Hui - Pascal triangle



Yang Hui (1238-1298)

# Sum of powers Euler <br> Dirichlet <br> Riemann <br> 20th century 

## Yang Hui - Pascal triangle



$$
n-(n-1)=1
$$

Yang Hui (1238-1298)

# Sum of powers Euler <br> Dirichlet <br> Riemann <br> 20th century 

Sum of powers up to 100 Sum of powers up to $n$
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

## Yang Hui - Pascal triangle



$$
\begin{aligned}
& n-(n-1)=1 \\
& n^{2}-(n-1)^{2}=-1+2 n
\end{aligned}
$$

Yang Hui (1238-1298)

```
Sum of powers up to }10
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to }10
```


## Yang Hui - Pascal triangle



$$
\begin{aligned}
& n-(n-1)=1 \\
& n^{2}-(n-1)^{2}=-1+2 n \\
& n^{3}-(n-1)^{3}=1-3 n+3 n^{2}
\end{aligned}
$$

Yang Hui (1238-1298)

```
Sum of powers up to 100

\section*{Yang Hui - Pascal triangle}

\[
\begin{aligned}
& n-(n-1)=1 \\
& n^{2}-(n-1)^{2}=-1+2 n \\
& n^{3}-(n-1)^{3}=1-3 n+3 n^{2} \\
& n^{k}-(n-1)^{k}= \\
& c_{k 1}+c_{k 2} n+c_{k 3} n^{2}+\cdots
\end{aligned}
\]

Yang Hui (1238-1298)
```

Sum of powers
Euler
Dirichlet
Riemann
20th century
Sum of powers up to }10
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to }10

```
\[
1^{k}+2^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}
\]

\section*{Sum of powers}

Sum of powers up to 100 Sum of powers up to \(n\)
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100
\[
\begin{aligned}
& 1^{k}+2^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1} \\
& n^{k}-(n-1)^{k}=c_{k 1}+c_{k 2} n+c_{k 3} n^{2}+\cdots+c_{k k} n^{k-1}
\end{aligned}
\]

Sum of powers
Euler
Dirichlet
Riemann
20th century

Sum of powers up to 100
Sum of powers up to \(n\)
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100
\[
\begin{gathered}
1^{k}+2^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1} \\
n^{k}-(n-1)^{k}=c_{k 1}+c_{k 2} n+c_{k 3} n^{2}+\cdots+c_{k k} n^{k-1} \\
\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & \cdots \\
a_{21} & a_{22} & 0 & 0 & \cdots \\
a_{31} & a_{32} & a_{33} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)=\left(\begin{array}{ccccc}
c_{11} & 0 & 0 & 0 & \cdots \\
c_{21} & c_{22} & 0 & 0 & \cdots \\
c_{31} & c_{32} & c_{33} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)^{-1}
\end{gathered}
\]

\title{
Sum of powers Euler \\ Dirichlet \\ Riemann \\ 20th century
}

Sum of powers up to 100 Sum of powers up to \(n\)
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

\section*{proof}

Set \(G(z, n)=\sum_{k=0}^{\infty} S_{k}(n) \frac{z_{k}^{k}}{k!}\).

\section*{proof}

Set \(G(z, n)=\sum_{k=0}^{\infty} S_{k}(n) \frac{z^{k}}{k!}\). Then change order of sums to obtain
\[
\begin{aligned}
G(z, n) & =\frac{1-e^{n z}}{e^{-z}-1}=\sum_{j=0}^{\infty} B_{j} \frac{(-z)^{j-1}}{j!} \sum_{i=1}^{\infty}-\frac{(n z)^{i}}{i!} \\
& =\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \frac{1}{k+1} \sum_{j=0}^{k}(-1)^{j} C_{k+1}^{j} B_{j} n^{k+1-j} .
\end{aligned}
\]

\section*{Sum of negative powers}

How about the sum of negative powers up to 100
\[
1+\frac{1}{2^{k}}+\cdots+\frac{1}{100^{k}} ?
\]
```

Sum of powers up to 100
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to 100

```

\section*{Sum of negative powers}

How about the sum of negative powers up to 100
\[
1+\frac{1}{2^{k}}+\cdots+\frac{1}{100^{k}} ?
\]
\(1+\frac{1}{2}+\cdots+\frac{1}{100} \approx 5.18\)
```

Sum of powers up to 100
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to }10

```

\section*{Sum of negative powers}

How about the sum of negative powers up to 100
\[
1+\frac{1}{2^{k}}+\cdots+\frac{1}{100^{k}} ?
\]
\(1+\frac{1}{2}+\cdots+\frac{1}{100} \approx 5.18\)
\(1+\frac{1}{2^{2}}+\cdots \frac{1}{100^{2}} \approx 1.64\)
```

Sum of powers up to 100
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui - Pascal triangle
Bernoulli's proof
Sum of negative powers up to }10

```

\section*{Sum of negative powers}

How about the sum of negative powers up to 100
\[
1+\frac{1}{2^{k}}+\cdots+\frac{1}{100^{k}} ?
\]
\(1+\frac{1}{2}+\cdots+\frac{1}{100} \approx 5.18\)
\(1+\frac{1}{2^{2}}+\cdots \frac{1}{100^{2}} \approx 1.64\)
\(1+\frac{1}{2^{3}}+\cdots \frac{1}{100^{3}} \approx 1.18\)

\section*{Sum of powers Euler Dirichlet Riemann 20th century}

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

\section*{Sum of negative powers}

How about sums of negative powers to any \(n\)
\[
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
\]
```

Sum of powers
Euler
Dirichlet
Riemann
20th century

```

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

\section*{Sum of negative powers}

How about sums of negative powers to any \(n\)
\[
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
\]

Do these values fit to nice function \(S(x)\) ?
```

Sum of powers
Euler
Dirichlet
Riemann
20th century

```

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

\section*{Sum of negative powers}

How about sums of negative powers to any \(n\)
\[
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
\]

Do these values fit to nice function \(S(x)\) ? YES !
```

Sum of powers
Euler
Dirichlet
Riemann
20th century

```

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

\section*{Sum of negative powers}

How about sums of negative powers to any \(n\)
\[
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
\]

Do these values fit to nice function \(S(x)\) ? YES !
This is solved by Euler (1707-1783) when he was 26 years old.
```

Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

\section*{Sum of negative powers}

How about sums of negative powers to any \(n\)
\[
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
\]

Do these values fit to nice function \(S(x)\) ? YES !
This is solved by Euler (1707-1783) when he was 26 years old.
```

Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

\section*{Sum of negative powers}

How about sums of negative powers to any \(n\)
\[
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
\]

Do these values fit to nice function \(S(x)\) ? YES !
This is solved by Euler (1707-1783) when he was 26 years old.


For any nice function \(f(x)\), the sum \(S(n)=\sum_{i=1}^{n} f(i)\) extends to a nice function \(S(x)\).
```

Sum of powers
Euler
Dirichlet
Riemann
20th century

```

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

\section*{Euler formula}

The relation between \(f(x)\) and \(S(x)\) is given by a difference equation:
\[
f(x)=S(x)-S(x-1)
\]

\section*{Euler formula}

The relation between \(f(x)\) and \(S(x)\) is given by a difference equation:
\[
f(x)=S(x)-S(x-1)
\]

Using the Taylor expansion
\[
S(x-1)=S(x)-S^{\prime}(x)+\frac{1}{2} S^{\prime \prime}(x)+\cdots=e^{-D} S(x), \quad D=\frac{d}{d x}
\]

\section*{Euler formula}

The relation between \(f(x)\) and \(S(x)\) is given by a difference equation:
\[
f(x)=S(x)-S(x-1)
\]

Using the Taylor expansion
\[
S(x-1)=S(x)-S^{\prime}(x)+\frac{1}{2} S^{\prime \prime}(x)+\cdots=e^{-D} S(x), \quad D=\frac{d}{d x}
\]
then
\[
f(x)=\left(1-e^{-D}\right) S(x)=\frac{1-e^{-D}}{D} D S(x)
\]
```

Sum of powers
Euler
Dirichlet
Riemann
20th century
Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

Thus we obtain a differential equation
\[
D S(x)=\frac{D}{1-e^{-D}} f(x)=\sum_{i=0}^{\infty}(-1)^{i} B_{i} \frac{D^{i}}{i!} f(x)
\]

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power Infinite sum of non-negative powers

Thus we obtain a differential equation
\[
\begin{aligned}
D S(x) & =\frac{D}{1-e^{-D}} f(x)=\sum_{i=0}^{\infty}(-1)^{i} B_{i} \frac{D^{i}}{i!} f(x) . \\
S(x) & =\int f(x) d x+\sum_{i=1}^{\infty}(-1)^{i} B_{i} \frac{D^{i-1}}{i!} f(x) .
\end{aligned}
\]

Sum of powers
Euler Dirichlet Riemann
20th century

Thus we obtain a differential equation
\[
\begin{aligned}
D S(x) & =\frac{D}{1-e^{-D}} f(x)=\sum_{i=0}^{\infty}(-1)^{i} B_{i} \frac{D^{i}}{i!} f(x) . \\
S(x) & =\int f(x) d x+\sum_{i=1}^{\infty}(-1)^{i} B_{i} \frac{D^{i-1}}{i!} f(x) .
\end{aligned}
\]

For \(f(x)=x^{k}\) with \(k \geq 0\) an integer, Euler's formula recovers Bernoulli's formula.
```

Sum of powers
Euler
Dirichlet
Riemann
20th century
Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

For each \(k<0\), one needs to determine a constant in the formula:

\title{
Sum of powers Euler Dirichlet Riemann 20th century
}

For each \(k<0\), one needs to determine a constant in the formula:
\[
S_{-1}(n)=\gamma+\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\cdots, \quad(\gamma=0.57721 \ldots)
\]

\title{
Sum of powers Euler Dirichlet Riemann 20th century
}

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power Infinite sum of non-negative powers

For each \(k<0\), one needs to determine a constant in the formula:
\[
\begin{aligned}
& S_{-1}(n)=\gamma+\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\cdots, \quad(\gamma=0.57721 \ldots) \\
& S_{-k}(n)=S_{-k}(\infty)+\frac{1}{(k-1) n^{k-1}}+\frac{1}{2 n^{k}}+\cdots, \quad(k>1)
\end{aligned}
\]

\title{
Sum of powers Euler Dirichlet Riemann 20th century
}

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power Infinite sum of non-negative powers

\section*{Question}

For each real \(k>1\), how to evaluate the infinite sum:
\[
\zeta(k):=S_{-k}(\infty)=1+\frac{1}{2^{k}}+\frac{1}{3^{k}}+\cdots ?
\]

\section*{Question}

For each real \(k>1\), how to evaluate the infinite sum:
\[
\zeta(k):=S_{-k}(\infty)=1+\frac{1}{2^{k}}+\frac{1}{3^{k}}+\cdots ?
\]

In 1735, Euler made the first major contribution to this problem: he solved the case \(k=2\) which was called Basel problem:
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \approx 1.6449
\]

\title{
Sum of powers Euler Dirichlet Riemann 20th century
}

He observed the fact \(\sin x=0\) if and only if \(x=0, \pm \pi, \pm 2 \pi \cdots\) which leads to a product formula:
\[
\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)
\]

He observed the fact \(\sin x=0\) if and only if \(x=0, \pm \pi, \pm 2 \pi \cdots\) which leads to a product formula:
\[
\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)
\]

On the other hand, there is also an addition formula:
\[
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
\]

He observed the fact \(\sin x=0\) if and only if \(x=0, \pm \pi, \pm 2 \pi \cdots\) which leads to a product formula:
\[
\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)
\]

On the other hand, there is also an addition formula:
\[
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
\]

Comparing the coefficients of \(x^{3}\) in these two expressions gives
\[
\sum_{k=1}^{\infty} \frac{1}{k^{2} \pi^{2}}=\frac{1}{3!}
\]

\title{
Sum of powers Euler Dirichlet Riemann \\ 20th century
}
```

Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

The argument also applies to symmetric functions of \(1 / \pi^{2} k^{2}\) and thus gives a formula for \(\zeta(2 k)\). More precisely, two expansions of \(\cot x=(\log \sin x)^{\prime}\) will give
\[
\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}
\]

\title{
Sum of powers Euler Dirichlet Riemann \\ 20th century
}
```

Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

The argument also applies to symmetric functions of \(1 / \pi^{2} k^{2}\) and thus gives a formula for \(\zeta(2 k)\). More precisely, two expansions of \(\cot x=(\log \sin x)^{\prime}\) will give
\[
\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}
\]
\(1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90} \approx 1.0823\)

The argument also applies to symmetric functions of \(1 / \pi^{2} k^{2}\) and thus gives a formula for \(\zeta(2 k)\). More precisely, two expansions of \(\cot x=(\log \sin x)^{\prime}\) will give
\[
\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}
\]
\(1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90} \approx 1.0823\)
\(1+\frac{1}{2^{6}}+\frac{1}{3^{6}}+\cdots=\frac{\pi^{6}}{945}=1.0173\)

The argument also applies to symmetric functions of \(1 / \pi^{2} k^{2}\) and thus gives a formula for \(\zeta(2 k)\). More precisely, two expansions of \(\cot x=(\log \sin x)^{\prime}\) will give
\[
\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}
\]
\(1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90} \approx 1.0823\)
\(1+\frac{1}{2^{6}}+\frac{1}{3^{6}}+\cdots=\frac{\pi^{6}}{945}=1.0173\)
\(1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots=\) ?

The argument also applies to symmetric functions of \(1 / \pi^{2} k^{2}\) and thus gives a formula for \(\zeta(2 k)\). More precisely, two expansions of \(\cot x=(\log \sin x)^{\prime}\) will give
\[
\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}
\]
\(1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90} \approx 1.0823\)
\(1+\frac{1}{2^{6}}+\frac{1}{3^{6}}+\cdots=\frac{\pi^{6}}{945}=1.0173\)
\(1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots=\) ?
\(1+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\cdots=\) ?

\title{
Sum of powers Euler Dirichlet Riemann \\ 20th century
}
```

Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

\section*{Euler product}

In 1737, Euler discovered another amazing property of \(\zeta(s)\) when he was 30 years old:
\[
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
\]
```

Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

\section*{Euler product}

In 1737, Euler discovered another amazing property of \(\zeta(s)\) when he was 30 years old:
\[
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
\]

Its immediate application is to take the expansion of \(\log \zeta(s)\) to give
\[
\log \zeta(s)=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)=\sum_{p} \frac{1}{p^{s}}+O(1)
\]

\section*{Euler product}

In 1737, Euler discovered another amazing property of \(\zeta(s)\) when he was 30 years old:
\[
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
\]

Its immediate application is to take the expansion of \(\log \zeta(s)\) to give
\[
\log \zeta(s)=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)=\sum_{p} \frac{1}{p^{s}}+O(1)
\]

Take \(s=1\) to give
\[
\sum \frac{1}{p}=\infty
\]

\section*{Euler product}

In 1737, Euler discovered another amazing property of \(\zeta(s)\) when he was 30 years old:
\[
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
\]

Its immediate application is to take the expansion of \(\log \zeta(s)\) to give
\[
\log \zeta(s)=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)=\sum_{p} \frac{1}{p^{s}}+O(1)
\]

Take \(s=1\) to give
\[
\sum \frac{1}{p}=\infty
\]

\section*{Infinite sum for negative real power}

Euler extended \(\zeta(s)\) to reals in \((0,1)\) by the following methods:
\[
\zeta(s)-2 \cdot 2^{-s} \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots .
\]

\section*{Infinite sum for negative real power}

Euler extended \(\zeta(s)\) to reals in \((0,1)\) by the following methods:
\[
\zeta(s)-2 \cdot 2^{-s} \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots .
\]

Thus define
\[
\zeta(s)=\frac{1}{1-2^{1-s}}\left(1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots\right), \quad(s>0) .
\]

\section*{Infinite sum for negative real power}

Euler extended \(\zeta(s)\) to reals in \((0,1)\) by the following methods:
\[
\zeta(s)-2 \cdot 2^{-s} \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots .
\]

Thus define
\[
\zeta(s)=\frac{1}{1-2^{1-s}}\left(1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots\right), \quad(s>0) .
\]

It has an asymptotic behavior near \(s=1\) :
\[
\zeta(s)=\frac{1}{s-1}+O(1)
\]

\section*{Infinite sum of positive powers}

Euler define infinite sum of non-negative powers by
\[
\zeta(-s)=1^{s}+2^{s}+\cdots=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-2^{s} x^{2}+3^{s} x^{3}-\cdots\right)
\]

\section*{Infinite sum of positive powers}

Euler define infinite sum of non-negative powers by
\[
\zeta(-s)=1^{s}+2^{s}+\cdots=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-2^{s} x^{2}+3^{s} x^{3}-\cdots\right)
\]

In 1739, Euler evaluated the values of \(\zeta\) at negative integers and obtained
\[
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
\]
```

Sum of negative powers up to n
Euler's formula
Infinite sum of negative powers
Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

```

\section*{Infinite sum of positive powers}

Euler define infinite sum of non-negative powers by
\[
\zeta(-s)=1^{s}+2^{s}+\cdots=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-2^{s} x^{2}+3^{s} x^{3}-\cdots\right)
\]

In 1739, Euler evaluated the values of \(\zeta\) at negative integers and obtained
\[
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
\]
\(1+1+\cdots+1 \cdots=-\frac{1}{2}\)

\section*{Infinite sum of positive powers}

Euler define infinite sum of non-negative powers by
\[
\zeta(-s)=1^{s}+2^{s}+\cdots=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-2^{s} x^{2}+3^{s} x^{3}-\cdots\right)
\]

In 1739, Euler evaluated the values of \(\zeta\) at negative integers and obtained
\[
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
\]
\(1+1+\cdots+1 \cdots=-\frac{1}{2}\)
\(1+2+3 \cdots+100+\cdots=-\frac{1}{12}\)

\section*{Infinite sum of positive powers}

Euler define infinite sum of non-negative powers by
\[
\zeta(-s)=1^{s}+2^{s}+\cdots=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-2^{s} x^{2}+3^{s} x^{3}-\cdots\right)
\]

In 1739, Euler evaluated the values of \(\zeta\) at negative integers and obtained
\[
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
\]
\(1+1+\cdots+1 \cdots=-\frac{1}{2}\)
\(1+2+3 \cdots+100+\cdots=-\frac{1}{12}\)
\(1+2^{2}+3^{2}+\cdots+100^{2}+\cdots=0\)

\section*{Infinite sum of positive powers}

Euler define infinite sum of non-negative powers by
\[
\zeta(-s)=1^{s}+2^{s}+\cdots=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-2^{s} x^{2}+3^{s} x^{3}-\cdots\right)
\]

In 1739, Euler evaluated the values of \(\zeta\) at negative integers and obtained
\[
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
\]
\(1+1+\cdots+1 \cdots=-\frac{1}{2}\)
\(1+2+3 \cdots+100+\cdots=-\frac{1}{12}\)
\(1+2^{2}+3^{2}+\cdots+100^{2}+\cdots=0\)
\(1+2^{3}+3^{3}+\cdots+100^{3}+\cdots=\frac{1}{120}\)

Sum of negative powers up to \(n\)
Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power Infinite sum of non-negative powers

\section*{Infinite sum of positive powers}

Euler define infinite sum of non-negative powers by
\[
\zeta(-s)=1^{s}+2^{s}+\cdots=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-2^{s} x^{2}+3^{s} x^{3}-\cdots\right)
\]

In 1739, Euler evaluated the values of \(\zeta\) at negative integers and obtained
\[
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
\]
\(1+1+\cdots+1 \cdots=-\frac{1}{2}\)
\(1+2+3 \cdots+100+\cdots=-\frac{1}{12}\)
\(1+2^{2}+3^{2}+\cdots+100^{2}+\cdots=0\)
\(1+2^{3}+3^{3}+\cdots+100^{3}+\cdots=\frac{1}{120}\)
\(1+2^{4}+3^{4} \cdots+\cdots+100^{4}+\cdots=0\)

\title{
Sum of powers Euler Dirichlet Riemann \\ 20th century
}

Sum of negative powers up to \(n\) Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power
Infinite sum of non-negative powers

Euler proved his formula by the following expression:
\[
\begin{aligned}
\zeta(-k) & =1+2^{k}+3^{k}+\cdots \\
& =\frac{1}{1-2^{k+1}}\left(1-2^{k}+3^{k}+\cdots\right) \\
& =\frac{1}{1-2^{k+1}} \lim _{x \rightarrow 1^{-}}\left(x-2^{k} x^{2}+3^{k} x^{3}+\cdots\right) \\
& =\left.\frac{1}{1-2^{k+1}}\left(x \frac{d}{d x}\right)^{k}\right|_{x=1} \frac{x}{1+x} .
\end{aligned}
\]

Sum of negative powers up to \(n\)
Euler's formula
Infinite sum of negative powers Euler product
Infinite sum for negative real power Infinite sum of non-negative powers

Euler proved his formula by the following expression:
\[
\begin{aligned}
\zeta(-k) & =1+2^{k}+3^{k}+\cdots \\
& =\frac{1}{1-2^{k+1}}\left(1-2^{k}+3^{k}+\cdots\right) \\
& =\frac{1}{1-2^{k+1}} \lim _{x \rightarrow 1^{-}}\left(x-2^{k} x^{2}+3^{k} x^{3}+\cdots\right) \\
& =\left.\frac{1}{1-2^{k+1}}\left(x \frac{d}{d x}\right)^{k}\right|_{x=1} \frac{x}{1+x} .
\end{aligned}
\]

In comparison with \(\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}\), there is a "functional equation" between \(\zeta(s)\) and \(\zeta(1-s)\) for integers.

Arithmetic progress of primes
Fourier transform of periodic functions
Fourier transform of non-periodic functions
Fourier analysis on finite groups
Fourier analysis on multiplicative group Dirichlet \(L\)-function
Mixing addition and multiplication
Dirichlet formula

\section*{Arithmetic progress of primes}

In 1837, Dirichlet introduced his L-function to study the arithmetic progress of primes.


Dirichlet (1805-1859)

\section*{Arithmetic progress of primes}

Fourier transform of periodic functions
Fourier transform of non-periodic functions
Fourier analysis on finite groups
Fourier analysis on multiplicative group Dirichiet \(L\)-function
Mixing addition and multiplication
Dirichlet formula

\section*{Arithmetic progress of primes}

In 1837, Dirichlet introduced his L-function to study the arithmetic progress of primes.

For two integers \(N\), a coprime to each other, there are infinitely many primes \(p\) such that \(p \equiv a\) \(\bmod N\).

Dirichlet (1805-1859)

\section*{Arithmetic progress of primes}

Fourier transform of periodic functions
Fourier transform of non-periodic functions
Fourier analysis on finite groups
Fourier analysis on multiplicative group Dirichlet \(L\)-function
Mixing addition and multiplication
Dirichlet formula

\section*{Arithmetic progress of primes}

In 1837, Dirichlet introduced his L-function to study the arithmetic progress of primes.


For two integers \(N\), a coprime to each other, there are infinitely many primes \(p\) such that \(p \equiv a\) \(\bmod N\).
Moreover,
\[
\sum_{p \equiv a} \frac{1}{\bmod N} \frac{1}{p}=\infty
\]

Dirichlet (1805-1859)

\section*{Sum of powers} Euler Dirichlet

Arithmetic progress of primes Fourier transform of periodic functions Fourier transform of non-periodic functions
Fourier analysis on finite groups
Fourier analysis on multiplicative group Dirichlet \(L\)-function
Mixing addition and multiplication
Dirichlet formula

\section*{Fourier transform of periodic functions}


Fourier (1768-1830)

\section*{Fourier transform of periodic functions}


Fourier (1768-1830)

Every periodic and continuous function \(f(x)=f(x+1)\) has a spectral decomposition:
\[
\begin{aligned}
& f(x)=\sum_{n=-\infty}^{\infty} \widehat{f}(-a) e^{2 \pi i a x} \\
& \widehat{f}(a):=\int_{0}^{1} f(x) e^{2 \pi i a x} d x .
\end{aligned}
\]
```

Sum of powers
Euler
Dirichlet
Riemann
20th century

```

\section*{Fourier transform of non-periodic functions}

\author{
Additive version:
}

Sum of powers Euler Dirichlet

\section*{Fourier transform of non-periodic functions}

\section*{Additive version:}

Every square integrable function on \(\mathbb{R}\) has a decomposition:
\[
\begin{aligned}
& f(x)=\int_{-\infty}^{\infty} \widehat{f}(-y) e^{2 \pi i y x} d y \\
& \widehat{f}(y):=\int_{-\infty}^{\infty} f(x) e^{2 \pi i x y} d x
\end{aligned}
\]

Sum of powers Euler
Dirichlet
Riemann
20th century

\section*{Fourier transform of non-periodic functions}

Additive version:
Every square integrable function on \(\mathbb{R}\) has a decomposition:
\[
\begin{aligned}
& f(x)=\int_{-\infty}^{\infty} \widehat{f}(-y) e^{2 \pi i y x} d y \\
& \widehat{f}(y):=\int_{-\infty}^{\infty} f(x) e^{2 \pi i x y} d x
\end{aligned}
\]

\section*{Fourier transform of non-periodic functions}

Additive version:
Every square integrable function on \(\mathbb{R}\) has a decomposition:
\[
\begin{aligned}
& f(x)=\int_{-\infty}^{\infty} \widehat{f}(-y) e^{2 \pi i y x} d y \\
& \widehat{f}(y):=\int_{-\infty}^{\infty} f(x) e^{2 \pi i x y} d x
\end{aligned}
\]

Multiplicative version:
Every integrable function on \((0, \infty)\) for measure \(d t / t\) has a decomposition:
\[
\begin{gathered}
f(x)=\int_{-i \infty}^{i \infty} \widehat{f}(-s) x^{s} \frac{d s}{2 \pi i} \\
\widehat{f}(s)=\int_{0}^{\infty} f(t) t^{s} \frac{d t}{t}
\end{gathered}
\]

\section*{Discrete Fourier analysis}

\section*{Additive version on \(\mathbb{Z} / N Z\) :}

Sum of powers Euler Dirichlet
Riemann 20th century

\section*{Discrete Fourier analysis}

Additive version on \(\mathbb{Z} / N Z\) :
Every function on \(\{0, \cdots, N-1\}\)
has a decomposition:
\[
\begin{gathered}
f(x)=\sum_{a=0}^{N-1} \widehat{f}(-a) e_{a}(x) \\
e_{a}(x):=e^{2 \pi i a x / N} \\
\widehat{f}(a):=\frac{1}{N} \sum_{x=0}^{N-1} f(x) e_{a}(x)
\end{gathered}
\]

\section*{Discrete Fourier analysis}

Additive version on \(\mathbb{Z} / N Z\) :

Every function on \(\{0, \cdots, N-1\}\) has a decomposition:
\[
\begin{gathered}
f(x)=\sum_{a=0}^{N-1} \widehat{f}(-a) e_{a}(x) \\
e_{a}(x):=e^{2 \pi i a x / N} \\
\widehat{f}(a):=\frac{1}{N} \sum_{x=0}^{N-1} f(x) e_{a}(x) .
\end{gathered}
\]

\section*{Discrete Fourier analysis}

Additive version on \(\mathbb{Z} / N Z\) :

Every function on \(\{0, \cdots, N-1\}\) has a decomposition:
\[
\begin{gathered}
f(x)=\sum_{a=0}^{N-1} \widehat{f}(-a) e_{a}(x) \\
e_{a}(x):=e^{2 \pi i a x / N} \\
\widehat{f}(a):=\frac{1}{N} \sum_{x=0}^{N-1} f(x) e_{a}(x)
\end{gathered}
\]

Multiplicative version on \((\mathbb{Z} / N \mathbb{Z})^{\times}\):
Every function on prime to \(N\) numbers in \(\{0, \cdots, N-1\}\)
\[
\begin{aligned}
f(x) & =\sum_{\chi: \text { characters }} f\left(\chi^{-1}\right) \chi(x) \\
\widehat{f}(\chi) & =\frac{1}{\phi(N)} \sum_{(\mathbb{Z} / N \mathbb{Z})^{x}} f(x) \chi(x) .
\end{aligned}
\]

\section*{Fourier analysis on multiplicative group}

Apply to \(G=(\mathbb{Z} / N \mathbb{Z})^{\times}\)and \(f=\delta_{a}\) (Dirac delta function), we obtain
\[
\delta_{a}=\sum_{\chi} \widehat{\delta}_{a}(\chi) \chi
\]

\section*{Fourier analysis on multiplicative group}

Apply to \(G=(\mathbb{Z} / N \mathbb{Z})^{\times}\)and \(f=\delta_{a}\) (Dirac delta function), we obtain
\[
\delta_{a}=\sum_{\chi} \widehat{\delta}_{a}(\chi) \chi
\]

Consequently,
\[
\sum_{p \equiv a} \frac{1}{\bmod N}=\sum_{p} \frac{\delta_{a}(p)}{p}=\sum_{\chi} \widehat{\delta}_{a}(\chi) \sum_{p} \frac{\chi(p)}{p} .
\]

\section*{Fourier analysis on multiplicative group}

Apply to \(G=(\mathbb{Z} / N \mathbb{Z})^{\times}\)and \(f=\delta_{a}\) (Dirac delta function), we obtain
\[
\delta_{a}=\sum_{\chi} \widehat{\delta}_{a}(\chi) \chi .
\]

Consequently,
\[
\sum_{p \equiv a} \frac{1}{\bmod N}=\sum_{p} \frac{\delta_{a}(p)}{p}=\sum_{\chi} \widehat{\delta}_{a}(\chi) \sum_{p} \frac{\chi(p)}{p} .
\]

When \(\chi=1, \sum_{p} \frac{\chi(p)}{p}=\infty\) by Euler, it suffices to show when \(\chi \neq 1\)
\[
\sum \frac{\chi(p)}{p} \neq \infty
\]

\section*{Sum of powers} Euler Dirichlet

\section*{Dirichlet L-function}

For \(\chi\) a character of \((\mathbb{Z} / N \mathbb{Z})^{\times}\), Dirichlet introduce his function
\[
L(\chi, s)=\sum_{n} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}, \quad s>1 .
\]

\section*{Dirichlet L-function}

For \(\chi\) a character of \((\mathbb{Z} / N \mathbb{Z})^{\times}\), Dirichlet introduce his function
\[
L(\chi, s)=\sum_{n} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}, \quad s>1 .
\]

Then
\[
\log L(\chi, 1)=\sum \frac{\chi(p)}{p}+O(1)
\]

\section*{Dirichlet L-function}

For \(\chi\) a character of \((\mathbb{Z} / N \mathbb{Z})^{\times}\), Dirichlet introduce his function
\[
L(\chi, s)=\sum_{n} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}, \quad s>1 .
\]

Then
\[
\log L(\chi, 1)=\sum \frac{\chi(p)}{p}+O(1)
\]

So is suffices to show that \(L(\chi, 1)\) is finite and nonzero.

\section*{Mixing addition and multiplication}

Now we apply additive Fourier expansion \(\chi: \chi=\sum_{a=0}^{N-1} \widehat{\chi}\left(e_{-a}\right) \psi_{a}\) to obtain
\[
L(\chi, s)=\sum_{a=0}^{N-1} \widehat{\chi}\left(\psi_{-a}\right) L\left(\psi_{a}, s\right), \quad L\left(\psi_{a}, s\right)=\sum_{n} \frac{e^{2 \pi i a n / N}}{n^{s}}
\]

\section*{Mixing addition and multiplication}

Now we apply additive Fourier expansion \(\chi: \chi=\sum_{a=0}^{N-1} \widehat{\chi}\left(e_{-a}\right) \psi_{a}\) to obtain
\[
\begin{gathered}
L(\chi, s)=\sum_{a=0}^{N-1} \widehat{\chi}\left(\psi_{-a}\right) L\left(\psi_{a}, s\right), \quad L\left(\psi_{a}, s\right)=\sum_{n} \frac{e^{2 \pi i a n / N}}{n^{s}} \\
L\left(e_{a}, 1\right)=\sum_{n=1}^{\infty} \frac{e_{a}(1)^{n}}{n}=-\log \left(1-e_{a}(1)\right)
\end{gathered}
\]

\section*{Dirichlet formula}

Combining everything gives an important special value formula:
\[
L(\chi, 1)=-\log \prod_{a=0}^{N-1}\left(1-e_{a}(1)\right)^{\widehat{\chi}\left(e_{a}\right)} .
\]

\section*{Arithmetic progress of primes}

Fourier transform of periodic functions
Fourier transform of non-periodic functions
Fourier analysis on finite groups
Fourier analysis on multiplicative group Dirichlet \(L\)-function
Mixing addition and multiplication
Dirichlet formula

\section*{Dirichlet formula}

Combining everything gives an important special value formula:
\[
L(\chi, 1)=-\log \prod_{a=0}^{N-1}\left(1-e_{a}(1)\right)^{\widehat{\chi}\left(e_{a}\right)} .
\]

This would imply that \(L(\chi, 1)\) is nonzero and finite, and completes the proof of Dirichlet's theorem.

\section*{Arithmetic progress of primes}

Fourier transform of periodic functions
Fourier transform of non-periodic functions
Fourier analysis on finite groups
Fourier analysis on multiplicative group Dirichiet \(L\)-function
Mixing addition and multiplication
Dirichlet formula

\section*{Dirichlet formula}

Combining everything gives an important special value formula:
\[
L(\chi, 1)=-\log \prod_{a=0}^{N-1}\left(1-e_{a}(1)\right)^{\widehat{\chi}\left(e_{a}\right)}
\]

This would imply that \(L(\chi, 1)\) is nonzero and finite, and completes the proof of Dirichlet's theorem.
Example: \(N=4, \chi:(\mathbb{Z} / 4 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}\), then
\[
L(\chi, 1)=1-\frac{1}{3}+\frac{1}{5} \cdots=\frac{\pi}{4} \approx 0.7853
\]

Riemann's memoire 1859
Expression in Fourier transform
Continuation and functional equation Riemann hypothesis

\section*{Riemann's memoire}

In 1859, in his memoire "on the number of primes less than a given quantity", consider zeta function with complex variable \(\operatorname{Re}(s)>1\) :


Riemann (1826-1866)

Riemann's memoire 1859
Expression in Fourier transform
Continuation and functional equation Riemann hypothesis

\section*{Riemann's memoire}

In 1859, in his memoire "on the number of primes less than a given quantity", consider zeta function with complex variable \(\operatorname{Re}(s)>1\) :

\[
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\prod_{p} \frac{1}{1-\frac{1}{p}}
\]

Riemann (1826-1866)

Riemann's memoire 1859
Expression in Fourier transform
Continuation and functional equation
Riemann hypothesis

\section*{Riemann's memoire}

In 1859, in his memoire "on the number of primes less than a given quantity", consider zeta function with complex variable \(\operatorname{Re}(s)>1\) :


Riemann (1826-1866)
\[
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
\]

Riemann discovered several extremely important properties using Fourier analysis on \(\mathbb{R}\) and \(\mathbb{R}^{\times}\).

\section*{Sum of powers Euler Dirichlet}

\section*{Riemann's memoire 1859}

Expression in Fourier transform
Continuation and functional equation
Riemann hypothesis

\section*{Expression in Fourier transform}

Using \(\Gamma(s):=\left\langle e^{-x}, x^{s-1}\right\rangle=\int_{0}^{\infty} e^{-x} x^{s} \frac{d x}{x}\), one obtains \(\zeta(s)\) as the Mellin transform of a theta function:
\(\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}, \quad f(t):=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}\).

\section*{Expression in Fourier transform}

Using \(\Gamma(s):=\left\langle e^{-x}, x^{s-1}\right\rangle=\int_{0}^{\infty} e^{-x} x^{s} \frac{d x}{x}\), one obtains \(\zeta(s)\) as the Mellin transform of a theta function:
\(\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}, \quad f(t):=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}\).
In terms of multiplicative Fourier transfer (or Mellin transfer)
\[
\xi(s)=\widehat{f}(s / 2)
\]

\section*{Continuation and functional equation}

Writing \(\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}\) and using Poisson summation formula, we have
\[
\xi(s)=\int_{1}^{\infty} f(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t}-\left(\frac{1}{s}+\frac{1}{1-s}\right) .
\]

\section*{Continuation and functional equation}

Writing \(\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}\) and using Poisson summation formula, we have
\[
\xi(s)=\int_{1}^{\infty} f(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t}-\left(\frac{1}{s}+\frac{1}{1-s}\right) .
\]

This gives the meromorphic continuation and the functional equation \(\xi(s)=\xi(1-s)\).

\section*{Continuation and functional equation}

Writing \(\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}\) and using Poisson summation formula, we have
\[
\xi(s)=\int_{1}^{\infty} f(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t}-\left(\frac{1}{s}+\frac{1}{1-s}\right) .
\]

This gives the meromorphic continuation and the functional equation \(\xi(s)=\xi(1-s)\). This somehow explains the relation between \(\zeta(1-k)\) and \(\zeta(k)\) given by Euler.

\section*{Riemann hypothesis}

There is another product formula of \(\zeta(s)\) in terms of its zeros (as \(\sin x)\).

\section*{Riemann hypothesis}

There is another product formula of \(\zeta(s)\) in terms of its zeros (as \(\sin x\) ).
Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes.

\section*{Riemann hypothesis}

There is another product formula of \(\zeta(s)\) in terms of its zeros (as \(\sin x)\).
Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes. Then Riemann bravely made a hypothesis that all zeros of \(\xi(x)\) lies on the line \(\operatorname{Re}(s)=1 / 2\).

\section*{Riemann hypothesis}

There is another product formula of \(\zeta(s)\) in terms of its zeros (as \(\sin x\) ).
Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes.
Then Riemann bravely made a hypothesis that all zeros of \(\xi(x)\) lies on the line \(\operatorname{Re}(s)=1 / 2\).
Riemann Hypothesis is equivalent to an asymptotic formula for the number of primes
\[
\pi(x):=\#\{p \leq x\}=\int_{2}^{x} \frac{d t}{\log t}+O_{\epsilon}\left(x^{\frac{1}{2}+\epsilon}\right)
\]
which is a conjectural stronger form of the prime number theorem.

\section*{L-functions}

A general L-functions takes a form
\[
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{F_{p}(s)} \quad a_{n} \in \mathbb{C}
\]
with \(F_{p}\) a polynomial of \(p^{-s}\) with leading coefficient 1 and of a fixed degree.

\section*{L-functions}

A general L-functions takes a form
\[
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{F_{p}(s)} \quad a_{n} \in \mathbb{C}
\]
with \(F_{p}\) a polynomial of \(p^{-s}\) with leading coefficient 1 and of a fixed degree.
It should have a meromorphic continuation to the complex plane, and satisfies a functional equation.

\section*{L-functions}

A general L-functions takes a form
\[
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{F_{p}(s)} \quad a_{n} \in \mathbb{C}
\]
with \(F_{p}\) a polynomial of \(p^{-s}\) with leading coefficient 1 and of a fixed degree.
It should have a meromorphic continuation to the complex plane, and satisfies a functional equation.
How to find a general L-series?

\title{
Sum of powers \\ Euler \\ Dirichlet \\ Riemann \\ 20th century
}

\section*{Review Euler and Riemann}
\[
\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} \stackrel{\text { Euler }}{=} \zeta(s) \stackrel{\text { Riemann }}{=} \frac{\pi^{s / 2}}{\Gamma(s / 2)} \int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}
\]

\section*{Review Euler and Riemann}
\[
\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} \stackrel{\text { Euler }}{=} \zeta(s) \stackrel{\text { Riemann }}{=} \frac{\pi^{s / 2}}{\Gamma(s / 2)} \int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}
\]

The left hand side is pure arithmetic as it reflects distribution of primes \(\{2,3,5, \cdots\}\), and right hand side is purely analytic as it decomposition into multiplicative spectrum of \(f(x)=\sum_{n=1}^{\infty} e^{-\pi n x^{2}}\).

\section*{Review Euler and Riemann}
\[
\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} \stackrel{\text { Euler }}{=} \zeta(s) \stackrel{\text { Riemann }}{=} \frac{\pi^{s / 2}}{\Gamma(s / 2)} \int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}
\]

The left hand side is pure arithmetic as it reflects distribution of primes \(\{2,3,5, \cdots\}\), and right hand side is purely analytic as it decomposition into multiplicative spectrum of \(f(x)=\sum_{n=1}^{\infty} e^{-\pi n x^{2}}\).
These two constructions can be generalized to high dimensions situation with counting points on algebraic varieties and spectral decompositions on functions on Lie groups.

\section*{Review Euler and Riemann}
\[
\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} \stackrel{\text { Euler }}{=} \zeta(s) \stackrel{\text { Riemann }}{=} \frac{\pi^{s / 2}}{\Gamma(s / 2)} \int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t} .
\]

The left hand side is pure arithmetic as it reflects distribution of primes \(\{2,3,5, \cdots\}\), and right hand side is purely analytic as it decomposition into multiplicative spectrum of
\(f(x)=\sum_{n=1}^{\infty} e^{-\pi n x^{2}}\).
These two constructions can be generalized to high dimensions situation with counting points on algebraic varieties and spectral decompositions on functions on Lie groups.
We usually call them motivic L-functions and automorphic
```

Sum of powers
Euler
Dirichlet
Riemann
20th century
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L}L\mathrm{ -series
Future of L-functions

```

\section*{Langlands program}

In 1960's, Langlands proposed a program to connect these two constructions.

\section*{Langlands program}

In 1960's, Langlands proposed a program to connect these two constructions.


Robert Langlands (1936-)

\section*{Langlands program}

In 1960's, Langlands proposed a program to connect these two constructions.


Loosely speaking, the Langlands program says that motivic \(L\)-functions and "algebraic automorphic L-functions" are identical.

\footnotetext{
Robert Langlands (1936-)
}

\section*{Langlands program}

In 1960's, Langlands proposed a program to connect these two constructions.


Robert Langlands (1936-)
Loosely speaking, the Langlands program says that motivic \(L\)-functions and "algebraic automorphic \(L\)-functions" are identical.
The program connects two different worlds of mathematics:
"arithmetic" vs "harmonic analysis".

\section*{Ramanujan \(\tau\)-function}

In 1917, Ramanujan studied the function \(q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}\). With \(q=e^{2 \pi i z}\), the above defines a function \(\Delta(z)\) with \(\operatorname{Imz}>0\).

\section*{Ramanujan \(\tau\)-function}

In 1917, Ramanujan studied the function \(q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}\). With \(q=e^{2 \pi i z}\), the above defines a function \(\Delta(z)\) with \(\operatorname{Imz}>0\).


Ramanujan (1887-1920)

\section*{Ramanujan \(\tau\)-function}

In 1917, Ramanujan studied the function \(q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}\). With \(q=e^{2 \pi i z}\), the above defines a function \(\Delta(z)\) with \(\operatorname{Imz}>0\).


He conjectured and later proved by Mordell that this function is an eigen modular form of weight 12:
\[
\begin{aligned}
& \Delta\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{12} \Delta(z) \\
& \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
\end{aligned}
\]
```

Sum of powers
Euler
Dirichlet
Riemann
20th century
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L-series
Future of L-functions

```

\section*{Hecke L-functions}

In 1930's, Hecke studied modular forms \(f\) and associate series \(L(f, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}\) for Res \(\gg 0\).

\section*{Hecke L-functions}

In 1930's, Hecke studied modular forms \(f\) and associate series \(L(f, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}\) for Res \(\gg 0\).


Enrich Hecke (1887-1947)

\section*{Hecke L-functions}

In 1930's, Hecke studied modular forms \(f\) and associate series \(L(f, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}\) for Res \(\gg 0\).

He showed that each \(L(f, s)\) has
a holomorphic continuation with functional equation.


Enrich Hecke (1887-1947)

\section*{Hecke L-functions}

In 1930's, Hecke studied modular forms \(f\) and associate series \(L(f, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}\) for Res \(\gg 0\).


He showed that each \(L(f, s)\) has a holomorphic continuation with functional equation.
Furthermore, he introduced operators \(T_{n}\) on \(S_{k}\) and showed that if \(f\) is an eigen form, then we have an Euler product
\[
L(f, s)=\prod\left(1-a_{p} p^{-s}+p^{k-1-2 s}\right)^{-1}
\]

Enrich Hecke (1887-1947)
```

L-functions
Review Euler and Riemann
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L-series
Future of L-functions

```

\section*{Modular are motivic}

In 1971, Deligne showed all \(L(f, s)\) for homolomorphic modular forms are "motivic".

\section*{Modular are motivic}

In 1971, Deligne showed all \(L(f, s)\) for homolomorphic modular forms are "motivic".


\section*{Pierre Deligne (1944-)}

\section*{Modular are motivic}

In 1971, Deligne showed all \(L(f, s)\) for homolomorphic modular forms are "motivic".


As a consequence, he proved the Peterson-Ramanujnan's conjecture
\[
\left|a_{p}\right| \leq p^{(k-1) / 2}
\]

\section*{Pierre Deligne (1944-)}
```

L-functions
Review Euler and Riemann
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L-series
Future of L-functions

```

\section*{L-functions for Elliptic curves}

The simplest but non-trivial motivic \(L\)-functions are those coming from elliptic curves
\[
E: y^{2}=x^{3}+a x+b, \quad a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0
\]

\section*{L-functions for Elliptic curves}

The simplest but non-trivial motivic \(L\)-functions are those coming from elliptic curves
\[
E: y^{2}=x^{3}+a x+b, \quad a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0
\]

Their \(L\)-functions are defined by Euler products:
\[
L(E, s)=\prod_{p}\left(1-a_{p} p^{-s}+\epsilon_{p} p^{1-2 s}\right)^{-1}
\]
where for finitely many \(p, \epsilon(p)=0, a_{p}= \pm 1,0\).

\section*{L-functions for Elliptic curves}

The simplest but non-trivial motivic \(L\)-functions are those coming from elliptic curves
\[
E: y^{2}=x^{3}+a x+b, \quad a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0
\]

Their \(L\)-functions are defined by Euler products:
\[
L(E, s)=\prod_{p}\left(1-a_{p} p^{-s}+\epsilon_{p} p^{1-2 s}\right)^{-1}
\]
where for finitely many \(p, \epsilon(p)=0, a_{p}= \pm 1,0\).
Otherwise, \(\epsilon_{p}=1\) and \(1-a_{p}+p\) is the number of solutions of
\[
y^{2} \equiv x^{3}+a x+b \quad \bmod p
\]

\section*{Modularity theorem}

In 1994, Wiles proved the modularity theorem \(L(E . s)=L(f, s)\) for semistable elliptic curves.

\section*{Modularity theorem}

In 1994, Wiles proved the modularity theorem \(L(E . s)=L(f, s)\) for semistable elliptic curves. The full modularity theorem was proved in 2001.

\section*{Modularity theorem}

In 1994, Wiles proved the modularity theorem \(L(E . s)=L(f, s)\) for semistable elliptic curves. The full modularity theorem was proved in 2001.


\section*{Modularity theorem}

In 1994, Wiles proved the modularity theorem \(L(E . s)=L(f, s)\) for semistable elliptic curves. The full modularity theorem was proved in 2001.


As a consequence, Wiles proved the Fermat last theorem: there are no positive integers \(a, b, c, n \geq 3\)
\[
a^{n}+b^{n}=c^{n} .
\]

\section*{Special values of L-series}

A web of conjectures assert that the special values of motivic L-functions often give crucial information about the Diophantine properties of the varieties, such as BSD, Tate, etc.

\section*{Special values of L-series}

A web of conjectures assert that the special values of motivic L-functions often give crucial information about the Diophantine properties of the varieties, such as BSD, Tate, etc.
For elliptic curves, the most notable work were done by
Gross-Zagier in 1980's and by
Zhiwei Yun and Wei Zhang in 2015.
```

Sum of powers
Euler
Dirichlet
Riemann
20th century
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L-series
Future of L-functions

```

\section*{Future}

Riemann hypothesis, Langlands program, and special values of L-series are three major topics of number theory in the 21st century.```

