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Question

For a positive integer k, what is the sum

1k + 2k + 3k + · · ·+ 100k?

1 + 1 · · ·+ 1︸ ︷︷ ︸
100 times

= 100

1 + 2 + 3 + · · ·+ 100 = 5050
12 + 22 + · · ·+ 1002 = 338350
13 + 23 + · · ·+ 1003 = 25502500
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Question

For positive integer k and n, is there a formula for

Sk(n) := 1k + 2k + 3k + · · ·+ nk?

S0(n) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n, Definition

S1(n) = 1 + 2 + 3 + · · ·+ n = n(n+1)
2 , Pythagoras(550BC )

S2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 , Archimed(250BC )

S3(n) = 13 + 23 + · · ·+ n3 = n2(n+1)2

4 , Aryabhata(476AD)
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General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
For each k , there is a general expression

1k + 2k + 3k + · · ·+ nk = ak1n + ak2n2 + · · ·+ akknk+1, aki ∈ Q

Hua Luogeng (1910-1985)
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Jacobi Bernoulli
(1655–1705)

Bernoulli numbers Bj :
z

ez−1 =
∑∞

j=0 Bj
z j

j! .

Sk(n) = 1
k+1

∑k
j=0(−1)jC k+1

j Bjn
k+1−j = (n−B)k+1−(−B)k+1

k+1 .
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Yang Hui – Pascal triangle

Yang Hui (1238–1298)

n − (n − 1) = 1
n2 − (n − 1)2 = −1 + 2n
n3−(n−1)3 = 1−3n+3n2

nk − (n − 1)k =
ck1 + ck2n + ck3n2 + · · ·
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nk − (n − 1)k = ck1 + ck2n + ck3n2 + · · ·+ ckknk−1


a11 0 0 0 · · ·
a21 a22 0 0 · · ·
a31 a32 a33 0 · · ·

...
...

...
...

...

 =


c11 0 0 0 · · ·
c21 c22 0 0 · · ·
c31 c32 c33 0 · · ·

...
...

...
...

...


−1

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

Sum of powers up to 100
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui – Pascal triangle
Bernoulli’s proof
Sum of negative powers up to 100

1k + 2k + · · ·+ nk = ak1n + ak2n2 + · · ·+ akknk+1

nk − (n − 1)k = ck1 + ck2n + ck3n2 + · · ·+ ckknk−1


a11 0 0 0 · · ·
a21 a22 0 0 · · ·
a31 a32 a33 0 · · ·

...
...

...
...

...

 =


c11 0 0 0 · · ·
c21 c22 0 0 · · ·
c31 c32 c33 0 · · ·

...
...

...
...

...


−1

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

Sum of powers up to 100
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui – Pascal triangle
Bernoulli’s proof
Sum of negative powers up to 100

1k + 2k + · · ·+ nk = ak1n + ak2n2 + · · ·+ akknk+1

nk − (n − 1)k = ck1 + ck2n + ck3n2 + · · ·+ ckknk−1


a11 0 0 0 · · ·
a21 a22 0 0 · · ·
a31 a32 a33 0 · · ·

...
...

...
...

...

 =


c11 0 0 0 · · ·
c21 c22 0 0 · · ·
c31 c32 c33 0 · · ·

...
...

...
...

...


−1

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

Sum of powers up to 100
Sum of powers up to n
General formula
Art of conjecturing (1713)
Yang Hui – Pascal triangle
Bernoulli’s proof
Sum of negative powers up to 100

proof

Set G (z , n) =
∑∞

k=0 Sk(n) z
k

k! .

Then change order of sums to obtain

G (z , n) =
1− enz

e−z − 1
=
∞∑
j=0

Bj
(−z)j−1

j!

∞∑
i=1

−(nz)i

i !

=
∞∑
k=0

zk

k!

1

k + 1

k∑
j=0

(−1)jC j
k+1Bjn

k+1−j .
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Sum of negative powers

How about the sum of negative powers up to 100

1 +
1

2k
+ · · ·+ 1

100k
?

1 + 1
2 + · · ·+ 1

100 ≈ 5.18
1 + 1

22
+ · · · 1

1002
≈ 1.64

1 + 1
23

+ · · · 1
1003
≈ 1.18
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Sum of negative powers

How about sums of negative powers to any n

S−k(n) = 1 +
1

2k
+ · · ·+ 1

nk
?

Do these values fit to nice function S(x)? YES !
This is solved by Euler (1707–1783) when he was 26 years old.

For any nice function f (x), the
sum S(n) =

∑n
i=1 f (i) extends

to a nice function S(x).
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Euler formula

The relation between f (x) and S(x) is given by a difference
equation:

f (x) = S(x)− S(x − 1).

Using the Taylor expansion

S(x − 1) = S(x)− S ′(x) +
1

2
S ′′(x) + · · · = e−DS(x), D =

d

dx
,

then

f (x) = (1− e−D)S(x) =
1− e−D

D
DS(x)
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Thus we obtain a differential equation

DS(x) =
D

1− e−D
f (x) =

∞∑
i=0

(−1)iBi
D i

i!
f (x).

S(x) =

∫
f (x)dx +

∞∑
i=1

(−1)iBi
D i−1

i!
f (x).

For f (x) = xk with k ≥ 0 an integer, Euler’s formula recovers
Bernoulli’s formula.
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For each k < 0, one needs to determine a constant in the formula:

S−1(n) = γ + log n +
1

2n
− 1

12n2
+ · · · , (γ = 0.57721...)

S−k(n) = S−k(∞) +
1

(k − 1)nk−1 +
1

2nk
+ · · · , (k > 1)
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Question

For each real k > 1, how to evaluate the infinite sum:

ζ(k) := S−k(∞) = 1 +
1

2k
+

1

3k
+ · · ·?

In 1735, Euler made the first major contribution to this problem:
he solved the case k = 2 which was called Basel problem:

∞∑
n=1

1

n2
=
π2

6
≈ 1.6449.
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He observed the fact sin x = 0 if and only if x = 0,±π,±2π · · ·
which leads to a product formula:

sin x = x
∞∏
k=1

(1− x2

k2π2
).

On the other hand, there is also an addition formula:

sin x = x − x3

3!
+

x5

5!
+ · · · .

Comparing the coefficients of x3 in these two expressions gives

∞∑
k=1

1

k2π2
=

1

3!
.
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The argument also applies to symmetric functions of 1/π2k2 and
thus gives a formula for ζ(2k). More precisely, two expansions of
cot x = (log sin x)′ will give

ζ(2k) =
(−1)k−1B2k(2π)2k

2(2k)!

1 + 1
24

+ 1
34

+ · · · = π4

90 ≈ 1.0823

1 + 1
26

+ 1
36

+ · · · = π6

945 = 1.0173

1 + 1
23

+ 1
33

+ · · · =?

1 + 1
25

+ 1
35

+ · · · =?
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Euler product

In 1737, Euler discovered another amazing property of ζ(s) when
he was 30 years old:

ζ(s) =
∏
p

1

1− 1
ps
. (s > 1)

Its immediate application is to take the expansion of log ζ(s) to
give

log ζ(s) = −
∑
p

log(1− 1

ps
) =

∑
p

1

ps
+ O(1).

Take s = 1 to give ∑ 1

p
=∞.

This is analytic proof of the infiniteness of primes (Euclid, 300 BC).
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Infinite sum for negative real power

Euler extended ζ(s) to reals in (0, 1) by the following methods:

ζ(s)− 2 · 2−sζ(s) = 1− 1

2s
+

1

3s
− · · · .

Thus define

ζ(s) =
1

1− 21−s
(1− 1

2s
+

1

3s
− · · · ), (s > 0).

It has an asymptotic behavior near s = 1:

ζ(s) =
1

s − 1
+ O(1).
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Infinite sum of positive powers

Euler define infinite sum of non-negative powers by

ζ(−s) = 1s + 2s + · · · =
1

1− 21−s
lim

x→1−
(x − 2sx2 + 3sx3 − · · · ).

In 1739, Euler evaluated the values of ζ at negative integers and
obtained

ζ(−k) = (−1)k
Bk+1

k + 1
, k < 0

1 + 1 + · · ·+ 1 · · · = −1
2

1 + 2 + 3 · · ·+ 100 + · · · = − 1
12

1 + 22 + 32 + · · ·+ 1002 + · · · = 0
1 + 23 + 33 + · · ·+ 1003 + · · · = 1

120
1 + 24 + 34 · · ·+ · · ·+ 1004 + · · · = 0
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, k < 0

1 + 1 + · · ·+ 1 · · · = −1
2

1 + 2 + 3 · · ·+ 100 + · · · = − 1
12

1 + 22 + 32 + · · ·+ 1002 + · · · = 0

1 + 23 + 33 + · · ·+ 1003 + · · · = 1
120

1 + 24 + 34 · · ·+ · · ·+ 1004 + · · · = 0
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Euler proved his formula by the following expression:

ζ(−k) =1 + 2k + 3k + · · ·

=
1

1− 2k+1
(1− 2k + 3k + · · · )

=
1

1− 2k+1
lim

x→1−
(x − 2kx2 + 3kx3 + · · · )

=
1

1− 2k+1

(
x

d

dx

)k ∣∣∣
x=1

x

1 + x
.

In comparison with ζ(2k) = (−1)k−1B2k (2π)
2k

2(2k)! , there is a “functional

equation” between ζ(s) and ζ(1− s) for integers.
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Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic
progress of primes.

Dirichlet (1805–1859)

For two integers N, a coprime to
each other, there are infinitely
many primes p such that p ≡ a
mod N.
Moreover, ∑

p≡a mod N

1

p
=∞.
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Fourier transform of periodic functions

Fourier (1768–1830)

Every periodic and continuous
function f (x) = f (x + 1) has a
spectral decomposition:

f (x) =
∞∑

n=−∞
f̂ (−a)e2πiax

f̂ (a) :=

∫ 1

0
f (x)e2πiaxdx .
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Fourier transform of non-periodic functions

Additive version:

Every square integrable function
on R has a decomposition:

f (x) =

∫ ∞
−∞

f̂ (−y)e2πiyxdy

f̂ (y) :=

∫ ∞
−∞

f (x)e2πixydx .

Multiplicative version:
Every integrable function on
(0,∞) for measure dt/t has a
decomposition:

f (x) =

∫ i∞

−i∞
f̂ (−s)x s ds

2πi

f̂ (s) =

∫ ∞
0

f (t)ts
dt

t
.
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Discrete Fourier analysis

Additive version on Z/NZ :

Every function on {0, · · · ,N − 1}
has a decomposition:

f (x) =
N−1∑
a=0

f̂ (−a)ea(x)

ea(x) := e2πiax/N

f̂ (a) :=
1

N

N−1∑
x=0

f (x)ea(x).

Multiplicative version on
(Z/NZ)×:
Every function on prime to N
numbers in {0, · · · ,N − 1}

f (x) =
∑

χ:characters

f (χ−1)χ(x)

f̂ (χ) =
1

φ(N)

∑
(Z/NZ)×

f (x)χ(x).
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Fourier analysis on multiplicative group

Apply to G = (Z/NZ)× and f = δa (Dirac delta function), we
obtain

δa =
∑
χ

δ̂a(χ)χ.

Consequently,∑
p≡a mod N

1

p
=
∑
p

δa(p)

p
=
∑
χ

δ̂a(χ)
∑
p

χ(p)

p
.

When χ = 1,
∑

p
χ(p)
p =∞ by Euler, it suffices to show when

χ 6= 1 ∑
p

χ(p)

p
6=∞
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Dirichlet L-function

For χ a character of (Z/NZ)×, Dirichlet introduce his function

L(χ, s) =
∑
n

χ(n)

ns
=
∏
p

1

1− χ(p)
ps

, s > 1.

Then

log L(χ, 1) =
∑ χ(p)

p
+ O(1).

So is suffices to show that L(χ, 1) is finite and nonzero.
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Mixing addition and multiplication

Now we apply additive Fourier expansion χ: χ =
∑N−1

a=0 χ̂(e−a)ψa

to obtain

L(χ, s) =
N−1∑
a=0

χ̂(ψ−a)L(ψa, s), L(ψa, s) =
∑
n

e2πian/N

ns

L(ea, 1) =
∞∑
n=1

ea(1)n

n
= − log(1− ea(1)).
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Dirichlet formula

Combining everything gives an important special value formula:

L(χ, 1) = − log
N−1∏
a=0

(1− ea(1))χ̂(ea).

This would imply that L(χ, 1) is nonzero and finite, and completes
the proof of Dirichlet’s theorem.
Example: N = 4, χ : (Z/4Z)× → {±1}, then

L(χ, 1) = 1− 1

3
+

1

5
· · · =

π

4
≈ 0.7853.
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Riemann’s memoire

In 1859, in his memoire “on the number of primes less than a given
quantity”, consider zeta function with complex variable Re(s) > 1:

Riemann (1826–1866)

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− 1
ps
.

Riemann discovered several
extremely important properties
using Fourier analysis on R and
R×.

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

Riemann’s memoire 1859
Expression in Fourier transform
Continuation and functional equation
Riemann hypothesis

Riemann’s memoire

In 1859, in his memoire “on the number of primes less than a given
quantity”, consider zeta function with complex variable Re(s) > 1:

Riemann (1826–1866)

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− 1
ps
.

Riemann discovered several
extremely important properties
using Fourier analysis on R and
R×.

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

Riemann’s memoire 1859
Expression in Fourier transform
Continuation and functional equation
Riemann hypothesis

Riemann’s memoire

In 1859, in his memoire “on the number of primes less than a given
quantity”, consider zeta function with complex variable Re(s) > 1:

Riemann (1826–1866)

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− 1
ps
.

Riemann discovered several
extremely important properties
using Fourier analysis on R and
R×.

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

Riemann’s memoire 1859
Expression in Fourier transform
Continuation and functional equation
Riemann hypothesis

Expression in Fourier transform

Using Γ(s) := 〈e−x , x s−1〉 =
∫∞
0 e−xx s dx

x , one obtains ζ(s) as the
Mellin transform of a theta function:

ξ(s) := π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

f (t)ts/2
dt

t
, f (t) :=

∞∑
n=1

e−πn
2t .

In terms of multiplicative Fourier transfer (or Mellin transfer)

ξ(s) = f̂ (s/2).
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x , one obtains ζ(s) as the
Mellin transform of a theta function:

ξ(s) := π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

f (t)ts/2
dt

t
, f (t) :=

∞∑
n=1

e−πn
2t .

In terms of multiplicative Fourier transfer (or Mellin transfer)

ξ(s) = f̂ (s/2).
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Continuation and functional equation

Writing
∫∞
0 =

∫ 1
0 +

∫∞
1 and using Poisson summation formula, we

have

ξ(s) =

∫ ∞
1

f (t)(ts/2 + t(1−s)/2)
dt

t
−
(

1

s
+

1

1− s

)
.

This gives the meromorphic continuation and the functional
equation ξ(s) = ξ(1− s). This somehow explains the relation
between ζ(1− k) and ζ(k) given by Euler.
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Riemann hypothesis

There is another product formula of ζ(s) in terms of its zeros (as
sin x).

Together with the Euler product formula, there is an explicit
relation between the zeros and the distribution of primes.
Then Riemann bravely made a hypothesis that all zeros of ξ(x) lies
on the line Re(s) = 1/2.
Riemann Hypothesis is equivalent to an asymptotic formula for the
number of primes

π(x) := #{p ≤ x} =

∫ x

2

dt

log t
+ Oε(x

1
2
+ε)

which is a conjectural stronger form of the prime number theorem.
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L-functions

A general L-functions takes a form

L(s) =
∞∑
n=1

an
ns

=
∏
p

1

Fp(s)
an ∈ C.

with Fp a polynomial of p−s with leading coefficient 1 and of a
fixed degree.

It should have a meromorphic continuation to the complex plane,
and satisfies a functional equation.
How to find a general L-series?

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

L-functions
Review Euler and Riemann
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L-series
Future of L-functions

L-functions

A general L-functions takes a form

L(s) =
∞∑
n=1

an
ns

=
∏
p

1

Fp(s)
an ∈ C.

with Fp a polynomial of p−s with leading coefficient 1 and of a
fixed degree.
It should have a meromorphic continuation to the complex plane,
and satisfies a functional equation.

How to find a general L-series?

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

L-functions
Review Euler and Riemann
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L-series
Future of L-functions

L-functions

A general L-functions takes a form

L(s) =
∞∑
n=1

an
ns

=
∏
p

1

Fp(s)
an ∈ C.

with Fp a polynomial of p−s with leading coefficient 1 and of a
fixed degree.
It should have a meromorphic continuation to the complex plane,
and satisfies a functional equation.
How to find a general L-series?

Shou-Wu Zhang On Sums of Powers



Sum of powers
Euler

Dirichlet
Riemann

20th century

L-functions
Review Euler and Riemann
Langlands program
Modular forms
Hecke L-functions
Modular are motivic
L-functions for elliptic curves
Modularity theorem
Special values of L-series
Future of L-functions

Review Euler and Riemann

∏
p

1

1− 1
ps

Euler
= ζ(s)

Riemann
=

πs/2

Γ(s/2)

∫ ∞
0

f (t)ts/2
dt

t
.

The left hand side is pure arithmetic as it reflects distribution of
primes {2, 3, 5, · · · }, and right hand side is purely analytic as it
decomposition into multiplicative spectrum of
f (x) =

∑∞
n=1 e−πnx

2
.

These two constructions can be generalized to high dimensions
situation with counting points on algebraic varieties and spectral
decompositions on functions on Lie groups.
We usually call them motivic L-functions and automorphic
L-functions respectively.
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Langlands program

In 1960’s, Langlands proposed a program to connect these two
constructions.

Robert Langlands (1936–)

Loosely speaking, the Langlands
program says that motivic
L-functions and “algebraic
automorphic L-functions” are
identical.
The program connects two
different worlds of mathematics:
“arithmetic” vs “harmonic
analysis”.
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Ramanujan τ -function

In 1917, Ramanujan studied the function q
∏∞

n=1(1− qn)24. With
q = e2πiz , the above defines a function ∆(z) with Imz > 0.

Ramanujan (1887–1920)

He conjectured and later proved
by Mordell that this function is
an eigen modular form of weight
12:

∆

(
az + b

cz + d

)
= (cz + d)12∆(z)

for all

(
a b
c d

)
∈ SL2(Z)
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Hecke L-functions

In 1930’s, Hecke studied modular forms f and associate series
L(f , s) =

∑∞
n=1 ann−s for Res >> 0.

Enrich Hecke (1887–1947)

He showed that each L(f , s) has
a holomorphic continuation with
functional equation.
Furthermore, he introduced
operators Tn on Sk and showed
that if f is an eigen form, then
we have an Euler product

L(f , s) =
∏
p

(1−app−s+pk−1−2s)−1
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Modular are motivic

In 1971, Deligne showed all L(f , s) for homolomorphic modular
forms are “motivic”.

Pierre Deligne (1944–)

As a consequence, he proved the
Peterson–Ramanujnan’s
conjecture

|ap| ≤ p(k−1)/2.
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L-functions for Elliptic curves

The simplest but non-trivial motivic L-functions are those coming
from elliptic curves

E : y2 = x3 + ax + b, a, b ∈ Z, 4a3 + 27b2 6= 0.

Their L-functions are defined by Euler products:

L(E , s) =
∏
p

(1− app−s + εpp1−2s)−1

where for finitely many p, ε(p) = 0, ap = ±1, 0.
Otherwise, εp = 1 and 1− ap + p is the number of solutions of

y2 ≡ x3 + ax + b mod p.
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Modularity theorem

In 1994, Wiles proved the modularity theorem L(E .s) = L(f , s) for
semistable elliptic curves.

The full modularity theorem was proved
in 2001.

Andrew Wiles (1953–)

As a consequence, Wiles proved
the Fermat last theorem: there
are no positive integers
a, b, c , n ≥ 3

an + bn = cn.
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Special values of L-series

A web of conjectures assert that the special values of motivic
L-functions often give crucial information about the Diophantine
properties of the varieties, such as BSD, Tate, etc.

For elliptic curves, the most notable work were done by
Gross–Zagier in 1980’s and by
Zhiwei Yun and Wei Zhang in 2015.
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Special values of L-series

A web of conjectures assert that the special values of motivic
L-functions often give crucial information about the Diophantine
properties of the varieties, such as BSD, Tate, etc.
For elliptic curves, the most notable work were done by
Gross–Zagier in 1980’s and by
Zhiwei Yun and Wei Zhang in 2015.
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Future

Riemann hypothesis, Langlands program, and special values of
L-series are three major topics of number theory in the 21st
century.

Shou-Wu Zhang On Sums of Powers


	Sum of powers
	Sum of powers up to 100
	Sum of powers up to n
	General formula
	Art of conjecturing (1713)
	Yang Hui – Pascal triangle
	Bernoulli's proof
	Sum of negative powers up to 100

	Euler
	Sum of negative powers up to n
	Euler's formula
	Infinite sum of negative powers
	Euler product
	Infinite sum for negative real power
	Infinite sum of non-negative powers

	Dirichlet
	Arithmetic progress of primes
	Fourier analysis
	Fourier transform of periodic functions
	Fourier transform of non-periodic functions
	Fourier analysis on finite groups
	Fourier analysis on multiplicative group
	Dirichlet L-function
	Mixing addition and multiplication
	Dirichlet formula

	Riemann
	Riemann's memoire 1859
	Expression in Fourier transform
	Continuation and functional equation
	Riemann hypothesis

	20th century
	L-functions
	Review Euler and Riemann
	Langlands program
	Modular forms
	Hecke L-functions
	Modular are motivic
	L-functions for elliptic curves
	Modularity theorem
	Special values of L-series
	Future of L-functions


