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Low dimensional Topology

Low-dimensional topology is to study manifolds, or more gen-

erally topological spaces, of four or fewer dimensions.

Smale in 1961 proved the Poincaré conjecture in
higher dimensions ≥ 5 and made dimensions three
and four seem the hardest;

Thurston’s geometrization conjecture, formulated in the late

1970s, offered a framework that suggested geometry and topol-
ogy were closely intertwined in low dimensions; In 2002 Grigori

Perelman announced a proof of the three-dimensional Poincar
conjecture;

In early 1980s, Vaughan Jones’ discovery of the Jones poly-
nomial not only led knot theory in new directions but gave rise
to still mysterious connections between low-dimensional topol-
ogy and mathematical physics.

Simon Donaldson in 1982 ”stunned the mathematical world”

(Atiyah 1986) (Exotic Structure) Michael Freedman in 1982

proved the 4-dimensional Generalized Poincar conjecture. Freed-

man and Kirby showed that an exotic R4 manifold exists. An

exotic R4 is a differentiable manifold that is homeomorphic but

not diffeomorphic to the Euclidean space R4.

Differential Geometry, Topology, Analysis, Algebraic
Geometry, Algebra, Nonlinear PDE, Dynamic Sys-
tem, Representation Theory, etc.

ENCOURAGE more younger people to study

low dimensional topology!



OUTLINE

(i) 3–Manifold and Knot topology:

Volume conjecture,

Witten’s TQFT approach,

Gukov’s complexification;

(ii) Algebraic Geometry method:

SL2(C) character variety

Beilinson Regulator of curves

K2 group for curves

Bohr-Sommerfeld Quantization

Reformulate the volume conjecture and dis-

cussions



Part I. The volume conjecture and TQFT

§0. Background for the volume conjec-
ture

Kashaev (1997) defined a series of invari-
ants of a link by using the quantum diloga-
rithm.

H. Murakami and J. Murakami (2001)
identified Kashaev invariants with the N–
colored Jones polynomial JN(K, e2πi/N) of
the link evaluated at e2πi/N .

Volume Conjecture: For any knot K,

2π lim
N→∞

log |JN(K, e2πi/N)|
N

= v3‖S3 \K‖

where ‖ · ‖ is the simplicial volume and v3
is the hyperbolic volume of the regular ideal
tetrahedron.

True for the torus knots, figure eight, some White-

head doubles of torus knots and other knots by straight-

forward calculations.



Knot invariants and TQFT

Jones polynomial can be defined purely from
representations of Hecke algebra, or skein
module combinatorically, or Categorification..

Finding a geometric and topological defini-
tion or relation is one of most important
questions in knot theory.

A knot is trivial iff both its L2-torsion and
its Alexander polynomial are trivial.

A knot is trivial iff every Vassiliev finite type
invariant of the knot agrees with the one of
the trivial knot.

The colored Jones polynomials and Alexan-
der polynomial are determined by the Vas-
siliev finite type invariant.

In short, Jones polynomial detects the trivial
knot if the volume conjecture is true.



§1. Witten’s TQFT and Jones invariant

Stationary Phase Approximation

Let f : M → R be a C2 Morse function on

the n-dimensional manifold M .

Z(M) =
∫
M
eikf(y)dy =

(
2π

k
)n/2 ∑

df(x)=0

eikf(x)eπisgn(H(f)(x))/4√
H(f)(x)

+O(k−n/2−1)

as k → ∞, where H(f)(x) is the Hessian of

f at the critical point x.



Witten’s TQFT

Let f = cs and M = BY the space of gauge

equivalence classes of connections of a prin-

ciple SU(2) bundle over a closed 3–manifold

Y 3.

Z(Y ) =
∫
BY e

ikcs([a])d[a]

∼
∑
Fa=0 e

ikcs(a)e
πisgn(∗da)/4 det(d∗ada)1/2

|det(∗da)|1/2

=
∑
Fa=0 e

ikcs(a)eπiη(a)/4
√
T (a)

as k → ∞, where η(a) is metric dependent

eta invariant and T (a) is the Reidemeister–

Ray–Singer torsion of the flat connection a.

Witten’s invariant from TQFT is a weighted

sum of topological invariant.



The colored Jones invariant

JN(K, e2πi(k0+2)) = 〈WRj(K)〉

is the expectation of Wilson loop observ-

ables.

The trivial connection is flat and has a con-

tribution: By Milnor and Turaev:
√
T (a) =

2 sin(πt)
∇(K,e2πt)

for t = N/k the U(1) holonomy

around the Wilson loops.

ZSU(2)(S3) =
√

2
k sin(πk).

Ztr
SU(2)(WRj(K)) ∼

√
2
k

sin(πt)
∇(K,e2πt)

,

JtrN (K, e2πi/k) ∼ k sin(πt)
π∇(K,e2πt)

,

The normalized Jones invariant gives ∼ 1
∇(K,e2πt)

which implies the Melvin–Morton conjecture

(Rozansky’s approach)



§2. Gukov’s complexification

Let f be the Chern–Simons functional over
BY with G = SL2(C), Y = S3 \K.

Z(Y ) ∼
∑
Fa=0 e

ikcs(a)eπiη(a)/4
√
T (a)

as k → ∞, where the “sum” is over the
SL2(C) flat connection.

The contribution of the hyperbolic flat con-
nection ah:

log J
ah
N (K, q) ∼ N

2π(V ol(ah) + i2π2cs(ah))

gives the generalized Volume Conjecture.

SL2(C) flat connections: X(S3 \ K) is of
1–complex dimension.

Question: Is there natural topological in-
variant parametrized by C∗ and related to
the Alexander–type polynomial as volume ?



X(S3 \ K) is related to the A-polynomial
studied by [CCGLS] (Cooper, Culler, Gillet,
Long, Shalen, Invent. Math 1994).

Gukov interpreted the A-polynomial zero lo-
cus as a Lagrangiang subspace in the diag-
noalization part C∗ × C∗ of X(T2).

So there is a complex 1-form θ defined on
the Lagrangian subspace.

Quantization conditions: proposed by Gukov,

(1)
∫
C Im(θ) = 0;

(2) 1
(2π)2

∫
C Re(θ) is rational,

for every closed loop in zero-locus of the
A-polynomial of the hyperbolic knot.

It is important to have the Bohr-Sommerfeld
quantization condition to have the system
consistently quantized and to have semi-
classical expression for the partitions for-
mula.



Part II. Algebraic Geometry Method, Reg-

ulator and K2

§3 SL2(C) character variety

Let K be a hyperbolic knot in S3, and MK

be the hyperbolic 3-manifold with finite vol-

ume.

R(MK) = Hom(π1(MK), SL2(C)), and t :

R(MK) → X(MK) be the canonical surjec-

tive morphism.

R(∂MK) = {(A,B)|A,B ∈ SL2(C), AB =

BA} with A = ρ(µ), B = ρ(λ) and (λ, µ)

fixed generators in π1.

RD ⊂ R(∂Mk) consists of ρ’s with ρ(µ) =

diag(m,m−1), ρ(λ) = diag(l, l−1).



RD
∼= C∗ × C∗

χ ∈ X(∂MK) is determined by its values on

µ, λ, µλ.

Define t : R(∂MK)→ C3 by

t(ρ) = (tr(ρ(µ)), tr(ρ(λ)), tr(ρ(µλ))).

Then X(∂MK) = t(R(∂MK)).

tD = t|RD is given by (m+m−1, l+ l−1,ml+

m−1l−1)

Let ρ0 be the discrete faithful representation

corresponding to the hyperbolic structure.

R0: the irreducible component of R(MK)

containing ρ0

X0 = t(R0). X0 ⊂ X(Mk) is an irreducible

affine variety of dimension 1.



t : R0(⊂ R(MK))→ X0(⊂ X(Mk))

r : X0 → Y0 = r(X0) ⊂ X(∂MK)

tD : D0 = t−1
D (Y0)(⊂ RD)→ Y0.

D0 is an affine algebraic set of dimension 1;

The image of each 1-dimensional compo-

nent of D0 under tD is the whole Y0.

D0 has no 0-dimensional components, has

at most two 1-dimensional components.

The A-polynomial A(l,m) is the defining poly-

nomial of the closure of the union of D0’s

(from other irreducible component Y
′

like

Y0).



§4 Beilinson Regulator of curves

Background on Regulator

Regulator lies in the area of number theory

and arithmetic geometry.

(i) Dirichlet Theorem: Let F be a number

field with n = [F : Q] = r1 + 2r2. r : O∗F →
Rr1+r2 (O∗F group of units of the integer

ring).

Imr as a lattice in he hyperplane
∑r1+r2
i=1 yi =

0.

Covolume RD = vol(H/r(O∗F )) is the Dirich-

let regulator.

lim
s→0

s−(r1+r2−1)ζF (s) = −
hFRD
ωF

for class number hF and ωF is the number

of roots of unity in F .



(ii) Borel Theorem: r(m) : K2m−1(F ) →
Rdm

Borel regulator Rm(F ) = covolume(Imr(m)inH).

When m = 1, K1(F ) = O∗F and R1(F ) =

RD,

Think F as the 0-dimensional variety Spec(F ),

Next is the algebraic curve (1-dimensional

variety) case, it was done by Bloch, Beilin-

son and Deligne independently.



Beilinson regulator construction

Let X be a smooth projective curve over C.

Let f, g be meromorphic functions on X.

Let S(f) be the set of zeros and poles of f .

Beilinson defined an element r(f, g) ∈ H1(X
′
;C∗),

where X
′
= X \ (S(f) ∪ S(g)) by

r(f, g)(γ) = exp( 1
2πi

(∫
γ logf

dg
g − log g(t0)

∫
γ
df
f

)
),

where γ is a loop in X
′

and t0 is a distin-

gushed base point in X
′
.



Facts: (a) r(f, g)(γ) is independent of the
based point t0.

(b) r(f, g) is independent of the branches of
log f and log g.

(c) Deligne showed that H1(X
′
;C∗) is the

group of isomorphism classes of the line bun-
dle over X

′
with flat connection.

(d) the curvature of the line bundle associ-
ated to r(f, g) is df

f ∧
dg
g .

(e) r(f1f2, g) = r(f1, g)⊗ r(f2, g)

(f) r(f, g) = r(g, f)−1

(h) Steinberg relation r(f,1 − f) = 1 for
f 6= 0,1.

(i) If x ∈ S(f) ∪ S(g) and γx is a small loop
around x in X

′
, then r(f, g)(γx) is the tame

symbol Tx(f, g) of f, g at x.



§5 K2 group for curves

Let C(X) be the field of meromorphic func-

tions on X, and C(X)∗ be the set of non-

zero meromorphic functions on X.

Matsumoto Theorem:

K2(C(X)) =
C(X)∗ ⊗ C(X)∗

〈f ⊗ (1− f) : f 6= 0,1〉
,

where the tensor product is taken over inte-

ger Z, the denominator means the subgroup

generated by those elements.

By Facts (e), (f), (h), we have r({f, g}) =

r(f, g):

r : K2(C(X))→ H1(X \ S;C∗)



Let Y be an irreducible component of the

zero locus of the A-polynomial A(l,m).

Proposition (Li-Wang): The element

{l,m} ∈ K2(C(Y ))

is a torsion element.

Suppose the component Y (= X0) contains

y0 which corresponds to the discrete faith-

ful character of the hyperbolic structure and

m(y0) = 1.

Base point: if y0 is a smooth point, choose

t0 = y0; otherwise we fix a point in the

preimage of y0 in Ỹ (the smooth projec-

tive model of Y ) and choose t0 as this fixed

point (equivalent to fixing a branch at the

singular point y0).



Proposition (Li–Q. Wang)

Over the character variety X0 (normal curve),

from the Beilinson regulator map,

2πi log r(l,m) =
∫
γ

log l
dm

m
− logm(t0)

∫
γ

dl

l

has imaginary part∫
γ
η(l,m) =

∫
γ

log |l|dargm− log |m|dargl

and the real part∫
γ
ξ(l,m) = −

∫
γ
(log |m|·d log |l|+argl·dargm).

(i) r(l,m) ∈ H1(X0,C
∗) is a torsion.

(ii) the closed 1-form η(l,m) is exact on X0;

(iii) 1
(2π)2

∫
γ ξ(l,m) ∈ 1

NZ, where N is the or-

der of the symbol {l,m} in K2(C(Y )).



Outline of the proof

(i) There is a finite field extension F of C(Y )

such that {l,m} ∈ K2(F ) is of order at most

2.

Inclusion map i : K2(C(Y )) → K2(F ) and

the transfer map tK2
: K2(F )→ K2(C(Y ))

The composition tK2
◦ i is given by multipli-

cation of n = [F : C(Y )] the degree of the

finite extension.

2tK2
◦ i({l,m}) = tK2

(2i({l,m})) = 0 and

= 2n{l,m}.



(ii) For any loop γ in the smooth part,

r(l,m)(γ)q = 1

due to torsion property.

Write r(l,m) = exp
(

1
2πi(Re+ iIm)

)
. Then

we have

Im = 0 and q·Re
2πi = 2πip for some integer p.

(ii) and (iii) follow from the identifications

of Re and Im parts.



Remarks: (1) Gukov argued (ii) and (iii) as

quantized condition from math-physics. It

gives a stronger version of Bohr-Sommerfeld

quantization with more information on the

rational number.

(2) η(l,m) = 1
2dV ol follows from Hodgson,

ξ(l,m) = d”cs”. The form ξ is not the

same Chern–Simons from Kirk–Klassen de-

rived from c2 second Chern class.

(3) Bloch Conjecture that ci ∈ H2i
D (X,Z(i))

in Deligne cohomology of C∞ complex pro-

jective variety X is torsion for i ≥ 2 and

holomorphic flat vector bundle. (A. Reznikov

confirmed the conjecture)

(4) Question: Does the result hold for other

irreducible components Y
′

which does not

containing t0 = t(ρ0) ?



Theorem (Li–Q. Wang)

Under the regulator map K2(C(Y ))→ H1(Y,C∗),

(1) {l,m} is mapped into exp( 1
2πi(ξ(l,m) +

iη(l,m))) = r(l,m) in H1(Y,C∗). Note that

ξ is only well-defined up to 1
2πdargm.

(2) The line bundle constructed from Bloch

etal is pull–back from the universal Heisen-

berg line bundle with connection on C∗×C∗,
over Y = X\ zeros and poles of l,m.

(3) The curvature of the line bundle is dl
l ∧

dm
m

and

d(ξ(l,m) + iη(l,m)) =
dl

l
∧
dm

m
= 0.



Remarks: (i) Note that H1(X
′
,C∗) is the

group of isomorphism classes of the line bun-

dle over X
′

with a flat connection asso-

ciate to the class in H1(X
′
,C∗) viewed as

π1(X
′
)→ C∗.

(ii) Thus the 1
2πi(ξ + iη) can be thought of

as the Chern–Simons class from the first

Chern class c1 of the flat line bundle (not

the usual transgression of c2 class.

(iii) Any invariant arising from the zero lo-

cus of the A–polynomial may play a role in

the volume conjecture. Qingxue Wang and

I constructed some SL2(C)–algebraic geo-

metric invariant from the character variety

X0 for the hyperbolic knots.

See “On the generalized volume conjecture

and regulator”, to appear in Commun. Con-

temp. Math.



§6 Reformulate the volume conjecture

from the aspect of regulator

For a path c : [0,1]→ Yh with c(0) = t0 and

c(1) = (l,m), denote

U(l,m) = −q
∫
c
(log|y|dlog|x|+ argxdargy).

Fix a number a with m = − exp(iπa), we

reformulate the generalized volume conjec-

ture:

lim
N,k→∞;N/k=a

logJN(K, e2πi/k)

k
=

1

2π
(V ol(l,m) + i

1

2π
U(l,m)).

We have proved that 1
(2π)2U(l,m) is well–

defined in R/Z. The classical Chern–Simons

invariant is well–defined in R/Z.



(i) Yoshida showed that there is an analytic
function F (u) that |F (u)| is related to the
volume and argF (u) is related to the Chern–
Simons of the hyperbolic 3–manifolds, by
the Atiyah–Patodi–Singer index;

(ii) Dupont showed that there is an natural
identification for the Chern–Simons class via
the dilogarithm functions, from purely alge-
bra point of view.

(iii) By focusing only on the regulator we
have a different generalized volume conjec-
ture from that of Gukov. Gukov and Mu-
rakami showed that their conjectures comes
from the different choices of polarization.

related the regulator to other polarizations
?

motivic interpretation for the asymptotic Jones
polynomials from Khovanov’s work on cat-
egorification approach ?



Higher regulator for hyperbolic links

For a hyperbolic link L ⊂ S3 with n compo-
nents, we have an induced restriction map

r : X(ML)→ X(T1)× · · · ×X(Tn)

. Let X0 = t(R0), where R0 is the irre-
ducible component of R(ML) containing the
discrete faithful representation ρ0 for the
complete hyperbolic structure on ML.

Proposition Let Y0 be the Zariski closure of
the image r(X0) in X(T1)×X(T2)×· · ·X(Tn).
Then Y0 is an n-dimensional affine variety.

Define Xi
0 be the subvareity of X0 defined

by I2
µj
− 4 = 0, j 6= i,1 ≤ j ≤ n and Vi be

an irreducible component of Xi
0 containing

χ0 = t(ρ0).

Proposition Let ri : X0 → X(Ti). Then we
have Vi is of dimension one, and the Zariski
Closure Wi of ri(Vi) in X(Ti) has dimension
one, for each i.



Let RD(Ti) be the subvariety of R(Ti) which
consists of diagonal representations. Let
ti|D be the restriction of ti on RD(Ti) =
C∗ × C∗. Set Di = t−1

i |D(Wi).

Let Y i be the smooth projective model of Yi
(an irreducible component of Di containing
yi) and C(Y i) the function field of Y i.

There is an induced map on the K-groups:

j : ⊕ni=1K2(C(Yi))→ K2(C(Y h)),

where Y h =
∏n
i=1 Y i.

Proposition (i) The symbol
∑n
i=1(−1)ε(i){mi, li}

is a torsion element in K2(Y h).

(ii) The higher holonomy of
∑n
i=1(−1)ε(i){mi, li},

is a torsion as representing higher order Deligne
cohomology classes given by Gajer.

Hence the quantization condition for hyper-
bolic links holds from this higher regulator
point of view.



§7 An approach to the volume conjec-

ture from the L2–invariant

Let JN(K, q) be the colored Jones polyno-

mial.

Volume conjecture

lim
N→+∞

∣∣∣∣∣JN
(
K, exp

(
2π
√
−1

N

))∣∣∣∣∣
1

3N
= ∆(2)

K (1).

(from the L2 twisted Alexander invariant de-

fined by Li–Zhang.)

Melvin–Morton conjecture∗

lim
d→+∞

J
(
K,Vd+1

)
[d+ 1]

(
exp

(
h

d

))
=

1

∆K (exp(h))
.

(*) Has been proved by Rozansky, Bar–Natan

and Garoufalidis (and also by Xiao–Song Lin

and Zhenghan Wang).



Remark. (1) Viewing the volume conjec-

ture as an L2–analogue of the Melvin–Morton

conjecture? (Along the line of Gukov’s ex-

pectation ?)

(2) Whether there is a “volume conjecture

with parameter”? Is our invariant ∆(2)
K (t)

related to the volume V ol(ρ) for ρ : Γ →
SL2(C) ? (A–polynomial of the knot)

See “An L2-Alexander invariant for knots.

Commun. Contemp. Math. 8 (2006), no.

2, 167–187.” with W. Zhang.


