
On n-sums in an abelian group

Weidong Gao

Center for Combinatorics, LPMC-TJKLC,
Nankai University, Tianjin 300071, P.R. China

A joint work with

David J. Grynkiewicz and Xingwu Xia

1



2

MSC2010: Primary 11B75; Secondary 11P99,
20K01

1. Introduction

Let G be an additive abelian group, let S be a
sequence of elements from G, and let |S | de-
note the length of S . For an integer n ≥ 1,
let Σn(S ) denote the set that consists of all el-
ements in G which can be expressed as the sum
of terms from a subsequence of S having length
n. The famous Erdős-Ginzburg-Ziv Theorem
asserts that, if G is finite and |S | ≥ 2|G| − 1,
then 0 ∈ Σ|G|(S ). This theorem has attracted a
lot of attention, and Σ|G|(S ) has been studied by
many authors.

In 1967, Mann [19] extended this theorem by
showing that, if |G| is prime and every term of
S has multiplicity at most |S | − |G| + 1, then
Σ|G|(S ) = G.
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In 1977, Olson [21] generalized Mann’s result
to any finite abelian group and showed that, if
|S | ≥ 2|G| − 1 and each coset x + H contains at
most |S |+1− |G|

|H| terms of S , for every subgroup
H, then

∑
|G|(S ) = G.

In 1995, the first author [9] proved that Ol-
son’s result is true with the restriction |S | ≥
2|G| −1 replaced by |S | ≥ |G|+D(G)−1, where
D(G) is the Davenport constant of G, which is
the smallest integer d such that every sequence
over G of length at least d has a nonempty zero-
sum subsequence.

In 2009, the restriction |S | ≥ |G| + D(G) − 1
was further weakened to |S | ≥ |G|+d∗(G) by the
second author [17], , where d∗(G) =

∑r
i=1(ni −

1) when G � Cn1 ⊕ . . . ⊕ Cnr with n1 | . . . | nr
(see also [15, Exercise 15.4]). (Note, it is well-
known and rather trivial that D(G) ≥ d∗(G)+1.)
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In 1999, Bollobás and Leader [1] proved that,
if |S | ≥ |G| + 1, then either 0 ∈ Σ|G|(S ) or
|Σ|G|(S )| ≥ |S | − |G| + 1.

They further conjectured that the minimum of
|Σ|G|(S )|, assuming 0 < Σ|G|(S ), equals the min-
imum of |Σ(T )|, assuming T is zero-sum free
and |T | = |S | − |G|+ 1, which was confirmed by
the first author and Leader [12] in 2005.
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In 2003, Y. O. Hamidoune [18] noted that the
bounds for |Σ|G|(S )|, assuming 0 < Σ|G|(S ), seemed
to only be tight for sequences having few dis-
tinct terms. To make this specific, he made the
following two conjectures (for cyclic groups).

Conjecture 1.1. Let G be a finite abelian group
and let S be a sequence over G of length |S | ≥
|G| + 1. Suppose the maximum multiplicity of a
term of S is at most |G| − | supp(S )| + 2. Then
either

|Σ|G|(S )| ≥ |S | − |G| + | supp(S )| − 1
or there exists a nontrivial subgroup H ≤ G
with H ⊂ Σ|G|(S ), where | supp(S )| denotes the
number of distinct terms in S .

Conjecture 1.2. Let G be a finite abelian group
and let S be a sequence over G of length |S | ≥
|G| + 1. If 0 < Σ|G|(S ), then

|Σ|G|(S )| ≥ |S | − |G| + | supp(S )| − 1,
where | supp(S )| denotes the number of distinct
terms in S .
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In 2005, Conjecture 1.1 was resolved by the
second author [15]. Later, it was pointed out by
DeVos, Goddyn and Mohar [6] that a similar
method actually yields the following stronger
generalization of Conjecture 1.1.

Theorem 1.3. Let G be an abelian group, let
n ≥ 1 be an integer, and let S be a sequence
over G of length |S | ≥ n + 1. Suppose the
maximum multiplicity of a term of S is at most
n − | supp(S )| + 2. Then either
|Σn(S )| ≥ min{n + 1, |S | − n + | supp(S )| − 1}

or there exists a nontrivial subgroup H ≤ G
with ng + H ⊂ Σn(S ) for some g ∈ supp(S ),
where | supp(S )| denotes the number of distinct
terms in S .
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In this paper, we show the following similar
result to Theorem 1.3 and confirm Conjecture
1.2 as its corollary.

Theorem 1.4. Let G be an abelian group, let
n ≥ 1 be an integer, let S be a sequence over
G of length |S | ≥ n + 1, and let h(S ) denote the
maximum multiplicity of a term from S . Then
either
|Σn(S )| ≥ min{ n + 1, |S | − n + | supp(S )| − 1}

or ng ∈ Σn(S ) for every g ∈ G whose multi-
plicity in S is at least vg(S ) ≥ h(S ) − 1, where
| supp(S )| denotes the number of distinct terms
in S .

Taking G finite and n = |G| in the above theo-
rem, Conjecture 1.2 clearly follows. For some
related papers, we refer to [2, 3, 5, 8, 10, 11, 20,
21, 24].
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2. Notation and Preliminaries

Let N denote the set of positive integers and let
N0 = N ∪ {0}. For any two integers a, b ∈ N0,
we set [a, b] = {x ∈ N0 : a ≤ x ≤ b}. Through-
out this paper, all abelian groups will be written
additively.

Let G be an abelian group and let F (G) be
the free abelian monoid, multiplicatively writ-
ten, with basis G. The elements of F (G) are
simply finite (unordered) sequences with terms
from G, multiplicatively written. We write se-
quences S ∈ F (G) in the form

S =
∏
g∈G

gvg(S ), with vg(S ) ∈ N0 for all g ∈ G.

We call vg(G) the multiplicity of the term g in
S and say that S contains g if vg(S ) > 0. Fur-
thermore, S is called square-free if vg(S ) ≤ 1
for all g ∈ G. The unit element 1 ∈ F (G) is
called the empty sequence. We use S 1 | S to
denote that the sequence S 1 is a subsequence
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of S . In such case, S S−1
1 denotes the subse-

quence of S obtained by removing the terms
from S 1. Let S 1, · · · , S r be subsequences of S .
We say S 1, · · · , S r are disjoint subsequences if
S 1 · . . . · S r | S . If a sequence S ∈ F (G) is
written in the form S = g1 · . . . · g`, we tacitly
assume that ` ∈ N0 and g1, . . . , g` ∈ G.

For a sequence

S = g1 · . . . · g` =
∏
g∈G

gvg(S ) ∈ F (G),

we call

• |S | = ` =
∑

g∈G vg(G) ∈ N0 the length of S ,
• h(S ) = max{vg(S ) : g ∈ G} ∈ [0, |S |] the

maximum of the multiplicities of S ,
• supp(S ) = {g ∈ G : vg(S ) > 0} ⊂ G the

support of S ,
•σ(S ) =

∑`
i=1 gi =

∑
g∈G vg(S )g ∈ G the

sum of S .

If φ : G → G′ is a map, then φ(S ) = φ(g1) ·
. . . · φ(g`) ∈ F (G′) denotes the sequence over
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G′ obtained by applying φ to each term of S .
Note |φ(S )| = |S |.

For r ∈ Z, we define
Σr(S ) = {σ(S ′) : S ′ | S and |S ′| = r}.

Note σ(S ′) = 0 when S ′ is the empty sequence.
For k ∈ Z, define

Σ≥k(S ) =
⋃̀
r=k
Σr(S ), Σ≤k(S ) =

k⋃
r=1
Σr(S ) and Σ(S ) =

⋃̀
r=1
Σr(S )

and
Σ∗
≤k(S ) = {0}∪Σ≤k(S ) and Σ∗(S ) = {0}∪Σ(S ).

A sequence S is called

• a zero-sum sequence if σ(S ) = 0,
• zero-sum free if 0 < Σ(S ).

Let A and B be two nonempty subsets of G.
Define

A + B = {a + b : a ∈ A, b ∈ B}.
If A = {x} for some x ∈ G, then we simply
denote A+B by x+B. For any nonempty subset
C of G, let −C = {−c : c ∈ C}. We say that
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g ∈ G is a unique expression element of A + B
if there is precisely one pair (a, b) ∈ A × B with
a + b = g. For a nonempty subset A ⊂ G and a
subgroup H of G, we say that A is H-periodic if
A is a union of H-cosets. Let stab(A) denote the
stabilizer of A in G, i.e., stab(A) = {g ∈ G : g +
A = A}. Then stab(A) is the maximal subgroup
H for which A is H-periodic. The set A is called
periodic if stab(A) is nontrivial. We use φH :
G → G/H for the natural homomorphism.

To prove Theorem 1.4, we need some prelim-
inaries, beginning with a result of Scherk [25].

Lemma 2.1. Let G be an abelian group and let
A and B be two finite subsets of G such that A+
B contains a unique expression element. Then
|A + B| ≥ |A| + |B| − 1.

By using Lemma 2.1 repeatedly, one can prove
the following result of Bovey, Erdős and Niven
[4].
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Lemma 2.2. Let S be a zero-sum free sequence
over an abelian group and let S 1, · · · , S k be
disjoint subsequences of S . Then
|Σ(S )| ≥ Σk

i=1 |Σ(S i)| with |Σ(S i)| ≥ |S i| for all i.

We also need the following result, which is the
common corollary of two more general addi-
tive results: the DeVos-Goddyn-Mohar Theo-
rem and the Partition Theorem (see [16, Chap-
ters 13-14]).

Theorem 2.3. [6, 16] Let G be an abelian group.
If S is a sequence over G, n ≤ |S |, and H =
stab(Σn(S )), then

|Σn(S )| ≥

 ∑
g∈G/H

min{n, vg(φH(S ))} − n + 1

 |H|,
where vg(φH(S )) denotes the multiplicity of the
term g ∈ G/H in the sequence S when its terms
have been reduced modulo H.
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Lemma 2.4. Let G be an abelian group, let n ≥
1 be an integer, let S ∈ F (G) be a sequence
over G with

|Σn(S )| ≤ |S | − n,

let H = stab(Σn(S )), and let φH : G → G/H be
the natural homomorphism.

1. If h(S ) ≤ n and g ∈ supp(S ) is a term with
vφH(g)(φH(S )) ≥ n, then

vφH(g)(φH(S )) ≥ n + |H|.

2. If g ∈ G is a term with near maximum mul-
tiplicity vg(S ) ≥ h(S ) − 1, then

vφH(g)(φH(S )) ≥ n.

Moreover, the above inequality is strict if ei-
ther h(S ) ≤ n or vg(S ) = h(S ).

Proof. Observe that 0 ≤ |Σn(S )| ≤ |S |−n implies
|S | ≥ n. Applying Theorem 2.3 to Σn(S ), we
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find that
(1)

|Σn(S )| ≥

 ∑
g∈G/H

min{n, vg(φH(S ))} − n + 1

 |H|.
Let N ≥ 0 denote the number of g ∈ G/H
with vg(φH(S )) ≥ n and let e denote the num-
ber of terms of S not equal modulo H to some
g ∈ G/H with vg(φH(S )) ≥ n. Then (1) can be
rewritten as

(2) |Σn(S )| ≥ ((N − 1)n + e + 1)|H|,

and we clearly have

(3) |S | ≤ h(S )N|H| + e.

If N = 0, then e = |S |, whence (2) yields |Σn(S )| ≥
(|S | −n+1)|H| ≥ |S | −n+1, contrary to hypoth-
esis. Therefore we may assume

N ≥ 1.

Combining (2), (3) and the hypothesis |Σn(S )| ≤
|S | − n yields
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(4)
((N−1)n+e+1)|H| ≤ |Σn(S )| ≤ |S |−n ≤ h(S )N |H|+e−n.

1. Let x = vφH(g)(φH(S )). Then, since vφH(g)(φH(S )) ≥
n, we can improve (3) to

|S | ≤ h(S )(N − 1)|H| + e + x.

Thus we can improve (4) to

((N−1)n+e+1)|H| ≤ |Σn(S )| ≤ |S |−n ≤ h(S )(N−1)|H|+e+x−n,

which rearranges to give

vφH(g)(φH(S )) = x ≥ (N−1)|H|(n−h(S ))+e(|H|−1)+n+|H|.

Since h(S ) ≤ n, applying the estimates N ≥ 1
and e ≥ 0 yields the desired lower bound.

2. If the second conclusion of this lemma is
false, then every term of S equal to g is counted
by e, i.e.,

e ≥ vg(S ) ≥ h(S ) − 1.
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Rearranging (4) and applying the above esti-
mate, we obtain
0 ≥ (n − h(S ))N |H| + e(|H| − 1) − n(|H| − 1) + |H|
≥ (n − h(S ))N |H| + (h(S ) − 1)(|H| − 1) − n(|H| − 1) + |H|
= (n − h(S ))(N|H| − |H| + 1) + 1.

Hence, since N ≥ 1, it follows that h(S ) ≥ n+1,
in which case vφH(g)(φH(S )) ≥ vg(S ) ≥ h(S ) −
1 ≥ n, a contradiction.

If h(S ) ≤ n, then part 1 now implies vφH(g)(φH(S )) ≥
n + |H| ≥ n + 1. On the other hand, if h(S ) ≥
n + 1 and vg(S ) = h(S ), then we trivially have
vφH(g)(φH(S )) ≥ vg(S ) = h(S ) ≥ n + 1, com-
pleting the proof. �
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The following lemma is crucial in this paper.

Lemma 2.5. Let G be an abelian group, let n ≥
λ ≥ 0 be integers, and let S = T0n−λ ∈ F (G)
be a sequence over G with |S | ≥ n and v0(S ) ≥
h(S ) − 1. Then either |Σn(S )| ≥ n + 1 or

Σ≥λ(T ) = Σn(S ).

Proof. Observe that
Σn(S ) = Σn(T0n−λ) = Σ[λ,n](T ) = {σ(T ′) : T ′ | T and |T ′| ∈ [λ, n]}.
Thus Σ≥λ(T ) = Σn(S ) is trivial unless

|T | ≥ n + 1,
which we now assume. This also shows that
Σn(S ) ⊂ Σ≥λ(T ), so that it suffices to show
Σ≥λ(T ) ⊂ Σn(S ). Moreover, we have |S | ≥
|T | ≥ n + 1 ≥ λ + 1, so that |T | − λ ≥ 1.

Now
Σn(S ) = σ(S )−Σ|S |−n(S ) = σ(T )−Σ|T |−λ(S ) and Σ≥λ(T ) = σ(T )−Σ∗

≤|T |−λ(T ).
Thus to show Σ≥λ(T ) ⊂ Σn(S ), it suffices to
show
(5) Σ∗

≤|T |−λ(T ) ⊂ Σ|T |−λ(S ),
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and to show |Σn(S )| ≥ n + 1, it suffices to show
|Σ|T |−λ(S )| ≥ n + 1. We now assume

(6) |Σ|T |−λ(S )| ≤ n = |S | − (|T | − λ)

and proceed to establish (5).

Let H ≤ G denote the stabilizer of Σ|T |−λ(S ).
Then, in view of (6) and the hypothesis v0(S ) ≥
h(S )−1, we can apply Lemma 2.4.2 to conclude
that

(7) v0(φH(S )) ≥ |T | − λ.

In particular, φH(TG\H)0|T |−λ is a subsequence
of φH(S ), where TG\H | T denotes the subse-
quence consisting of all terms from G\H. Con-
sequently, since Σ|T |−λ(S ) is H-periodic, we see
that, in order to establish (5) (and thus complete
the proof), it suffices to show

Σ∗
≤|T |−λ(φH(TG\H)) = Σ∗

≤|T |−λ(φH(T )) ⊂ Σ|T |−λ(φH(TG\H)0|T |−λ).

Since the above inclusion holds trivially with
equality, the proof is complete. �
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If A ⊂ G, then we define Σ(A) = Σ(S ) where S
is the square-free sequence with supp(S ) = A.

Lemma 2.6. Let S be a subset of an abelian
group G with 0 < Σ(S ). Then

(1) |Σ(S )| ≥ 2|S | − 1;
(2) if |S | ≥ 4, then |Σ(S )| ≥ 2|S |;
(3) if |S | = 3 and S does not contain exactly one

element of order two, then |Σ(S )| ≥ 2|S |.

Proof. 1. and 2. have been proved in [7].

3. If S contains no element of order two, then
the result has also been proved in [7]. Now
assume that S contains at least two elements
of order two. Let S = {a, b, c} with ord(a) =
ord(b) = 2. If c = a + b, then a + b + c =
a + b + a + b = 2a + 2b = 0 + 0 = 0, contra-
dicting that 0 < Σ(S ). Therefore, a + b < S . If
a + c = b, then a + c + b = 2b = 0, likewise
a contradiction. Hence, a + c < S . Similarly,
we can prove b + c < S . Note that a + b + c <
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{a, b, c, a+ b, b+ c, c+ a}. Therefore, |Σ(S )| = 7
and we are done. �

Lemma 2.7. Let G be an abelian group and let
S ∈ F (G) be a zero-sumfree sequence. Then
|Σ(S )| ≥ |S | + | supp(S )| − 1, and we have strict
inequality unless |S | ≤ 2 or |S | = 3 with S con-
taining exactly one element of order two.

Proof. Let S 1 be a square-free subsequence of
S with |S 1| = | supp(S )| and let S 2 = S S−1

1 .
Applying Lemma 2.2 to S = S 1S 2, we obtain
that

|Σ(S )| ≥ |Σ(S 1)|+|Σ(S 2)| ≥ |S 2|+|Σ(S 1)| = |S |−|S 1|+|Σ(S 1)|.

Now the result follows from Lemma 2.6. �

Given subsets A, B ⊂ G, we define the re-
stricted sumset to be

A+̇B = {a + b : a ∈ A, b ∈ B, a , b}.

Lemma 2.8. Let A be a finite subset of an abelian
group with 0 ∈ A and |A| ≥ 3 and let H = 〈A〉. If
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H is an elementary 2-group, also suppose that
A , H. Then |A+̇A| ≥ |A|.

Proof. Assume by contradiction that |A+̇A| ≤
|A| − 1. Clearly, a+ A \ {a} ⊂ A+̇A for all a ∈ A.
Thus

(8) a + A \ {a} = A+̇A = A \ {0}

for all a ∈ A.

If every nonzero element of A has order 2, then
H will be an elementary 2-group and A+̇A =
(A + A) \ {0}. In this case, (8) implies A = A +
A, which is easily seen to only be possible if A
is itself a subgroup, thus equal to H. As this
is contrary to hypothesis, we may now assume
there is some a ∈ A \ {0} with ord(a) ≥ 3.

Now (8) is only possible if

A = {0, a} ∪ B

with B = a + B a disjoint 〈a〉-periodic sub-
set. Since 〈a〉 is a cyclic group of order at least
3, and since B is 〈a〉-periodic, it follows that
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B+̇B = B + B ⊂ A+̇A = {a} ∪ B is also 〈a〉-
periodic. Thus B + B = B, which is only pos-
sible if B is a subgroup of G or the empty set.
Since 0 < B, the former is not possible, and
since |A| ≥ 3, the latter is also not possible, a
concluding contradiction. �

Lemma 2.9. Let A be a finite subset of an abelian
group with 0 ∈ A and |A| ≥ 4 and let H = 〈A〉.
Suppose |A| ≤ |H| − 1 with strict inequality if H
is an elementary 2-group. Then |A+̇A| ≥ |A| + 1
or A = L ∪ (a + L) for some cardinality two
subgroup L ≤ G and a ∈ G.

Proof. Assume by contradiction that |A+̇A| ≤
|A|. By Lemma 2.8, we have

|A+̇A| = |A|.
Clearly, a + A \ {a} ⊂ A+̇A for all a ∈ A. Thus
(9) a + A \ {a} ⊂ A+̇A = (A \ {0}) ∪ {b}
for all a ∈ A and some b < A \ {0}.

If every nonzero element of A has order 2, then
H will be an elementary 2-group and A+̇A =
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(A + A) \ {0}. In this case, (9) implies A + A =
A∪ {b}, which, in view of |A| ≥ 3, is only possi-
ble if A is itself a subgroup or a subgroup with
at most one element removed (being a simple
consequence of Kneser’s Theorem [16, Chap-
ter 6]). Hence |A| ≥ |H| − 1, contrary to hy-
pothesis, and we may now assume there is some
a ∈ A \ {0} with ord(a) ≥ 3. Let K = 〈a〉.

Now (9) is only possible if

A = {0, a} ∪ B ∪ B′

with B = B+ a a disjoint K-periodic subset and
B′ either empty or a disjoint arithmetic progres-
sion with difference a whose last term is b − a.
Since ord(a) ≥ 3, K is a cyclic group of order
at least 3.

Suppose B is nonempty. Then, since B is K-
periodic with K a cyclic group of order |K| ≥ 3,
it follows that A + B = A+̇B ⊂ A+̇A = (A \
{0})∪ {b}. Since A+ B is K-periodic, it must be
contained in the maximal K-periodic subset of
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(A\{0})∪{b}. We consider two cases depending
on whether b = 0 or b , 0.

If b = 0, then (A \ {0}) ∪ {b} = A. In this case,
since |φK(A+B)| ≥ |φK(A)|, we see that the only
way A + B can be contained in the maximal K-
periodic subset of A = (A \ {0}) ∪ {b} is if A is
itself K-periodic with K cyclic of order |K| ≥ 3.
It follows that A+A = A+̇A = (A\{0})∪{b} = A,
implying that A is itself a subgroup, thus equal
to H, which is contrary to hypothesis.

If b , 0, then 0, a ∈ A ∩ K ensures that K is a
K-coset that intersects (A \ {0}) ∪ {b} but which
is not contained in (A\{0})∪{b}. Consequently,
the maximal K-periodic subset of (A \ {0})∪ {b}
is contained in (A + K) \ K, and thus has size at
most |φK(A)| − 1. But this makes it impossible
for A + B to be contained in this maximal K-
periodic subset in view of |φK(A+B)| ≥ |φK(A)|.
So we may now assume B is empty.
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Since B is empty and |A| ≥ 4, we have

A = {0, a} ∪ B′ = {0, a} ∪ {x, x + a, . . . , x + ta},

for some x ∈ G, where t = |A| − 3 ≥ 1 and
b = x + (t + 1)a. Thus

A+̇A = {a} ∪ {x, x + a, . . . , x + (t + 1)a} ∪ {2x + a, 2x + 2a, . . . , 2x + (2t − 1)a}(10)
= {a} ∪ {x, x + a, . . . , x + ta, x + (t + 1)a},(11)

with the latter equality from (9) and the ele-
ments listed in (11) distinct.

Since 1 ≤ t ≤ 2t−1, it follows that the element
2x+ta, from the third set in (10), must also lie in
the set {a}∪{x, x+a, . . . , x+ (t+1)a} from (11).
If 2x + ta = x + ja for some j ∈ [0, t], then 0 =
x+ (t− j)a ∈ {x, x+a, . . . , x+ ta}, contradicting
that these are all elements of A distinct from 0
and a. If 2x+ ta = x+ (t+1)a, then this implies
x = a, contradicting that x, a ∈ A are distinct
elements of A. Therefore the only remaining
possibility is that

(12) 2x + ta = a.
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Suppose |A| ≥ 5, which is equivalent to as-
suming t ≥ 2. In this case, (10) and (12) en-
sure that 2a = 2x + (t + 1)a ∈ A+̇A. Com-
paring this with (11), we see that 2a ∈ A+̇A
forces x = 2a, which combined with (12) yields
(t + 3)a = 0. Since x = 2a and (t + 3)a = 0,
it follows that A = {0, a, x, x + a, . . . , x + ta} =
{0, a, 2a, . . . , (t + 2)a} = H, contrary to hypoth-
esis. So it only remains to consider the case
|A| = 4.

For |A| = 4, we have A = {0, a} ∪ {x, x + a}. In
this case,

A+̇A = {a} ∪ {x, x + a, x + 2a} ∪ {2x + a}.
Since A = {0, a} ∪ {x, x + a} are the distinct ele-
ments of A with ord(a) ≥ 3, it is easily verified
that the elements {x, x + a, x + 2a} are distinct
from each other as well as from a and 2x + a.
Thus |A+̇A| ≥ 5 = |A| + 1 follows unless a =
2x + a. However, if a = 2x + a, then A =
{0, x} ∪ (a + {0, x}) with {0, x} = L ≤ G a sub-
group of order two, also as desired. �
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Note that Lemmas 2.8 and 2.9 both may be
paraphrased as concluding that either |A+̇A| is
large or A is a large subset of a periodic subset.
Unlike the case of ordinary sumsets, this lat-
ter conclusion does not force A+̇A to be itself
periodic. As yet, there is no Kneser-type exten-
sion of the Erdős-Heilbronn Conjecture to an
arbitrary abelian group (see [16, Chapter 22]).
Lemmas 2.8 and 2.9 may be viewed as the first
easily verified cases in whatever this extension
should be.

3. Proof of Theorem 1.4

Proof of Theorem 1.4. Assume by contradiction
that we have some g ∈ G with vg(S ) ≥ h(S )− 1
and ng < Σn(S ). Note that this theorem is trans-
lation invariant, so we may assume that g = 0.
Hence

0 = n0 < Σn(S ) and v0(S ) ≥ h(S ) − 1.
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If v0(S ) ≥ n, then 0 = n0 ∈ Σn(S ) holds triv-
ially, contrary to assumption. So we may as-
sume that

v0(S ) = n − λ for some λ ∈ [1, n].
Let

S = 0n−λT
with 0 - T . We need to show
|Σn(S )| ≥ min{ n + 1, |S | − n + | supp(S )| − 1}.
Assume by contradiction that

|Σn(S )| ≤ n.
Then, by Lemma 2.5,
(13) Σ≥λ(T ) = Σn(S ).
So it suffices to prove that

|Σ≥λ(T )| ≥ |S | − n + | supp(S )| − 1.

Let T0 be a maximal (in length) subsequence
of T with σ(T0) = 0 (T0 is the empty sequence
if T is zero-sum free). Since 0 < Σn(S ) =
Σ≥λ(T ), we have

|T0| ≤ λ − 1.
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Let T1 = TT−1
0 , so

(14)
T = T0T1 with |T1| = |T |−|T0| ≥ |T |−λ+1 = |S |−n+1.

Then, in view of the maximality of T0, it fol-
lows that

T1 is zero-sum free.

Claim 1.
(

supp(T0) \ supp(T1)
)
∩ Σ(T1) = ∅.

Assume to the contrary that x = σ(V1) ∈ supp(T0)\
supp(T1) for some nontrivial subsequence V1 |
T1. Then |V1| ≥ 2 (else x ∈ supp(T1), contrary
to assumption). Therefore, T0x−1V1 is a zero-
sum subsequence of T of length |T0|−1+ |V1| >
|T0|, contradicting the maximality of T0. This
proves Claim 1.

In view of (14) and the hypothesis |S | ≥ n+ 1,
choose a subsequence V of T1 with

(15) |V | = |S | − n − 1
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and let U = T1V−1. Observe that |U | = |T1| −
|V | = |T | − |T0| − (|S | − n − 1) = λ − |T0| + 1, so
(16) T1 = UV with |U | = λ−|T0|+1 ≥ 2.
Furthermore, choose V as above so that |supp(V)∩
supp(U)| is maximal.

Let
A = {0} ∪ −

(
supp(T0) \ supp(T1)

)
.

Since σ(T0) = 0, we have
(17) A ⊂ {0} ∪ − supp(T0) = Σ≥|T0|−1(T0).
Let

B = σ(U) + Σ∗(V).
Since UV = T1, (16) implies that
(18) B ⊂ Σ≥λ−|T0|+1(T1).
Since T0 | T with 0 - T , and since V | T1 with
T1 zero-sum free, we clearly have
(19)
|A| = | supp(T0)\supp(T1)|+1 and |B| = 1+|Σ(V)|.
Since T = T0T1, (17) and (18) imply that
(20) A + B ⊂ Σ≥λ(T ).
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Let
C = Σ|U |−1(U) = σ(U) − supp(U).

Then
(21) |C| = |supp(U)|.
For any x ∈ C, there is some subsequence Ux |
U with
σ(Ux) = x and |Ux| = |U | − 1 = λ − |T0|.

Since σ(T0) = 0, it follows that σ(UxT0) =
σ(Ux)+σ(T0) = x with |UxT0| = |Ux|+|T0| = λ.
Since Ux | U, U | T1 and T = T1T0, it follows
that UxT0 | T . As this is true for any x ∈ C, we
conclude that
(22) C ⊂ Σλ(T ) ⊂ Σ≥λ(T ).

Claim 2. |A + B| ≥ |A| + |B| − 1.

Since 0 ∈ A and σ(U) ∈ B, we have σ(U) ∈
A + B. If σ(U) is not a unique expression ele-
ment of A+B, then we deduce thatσ(U) = −x+
σ(U)+σ(V1) for some x ∈ supp(T0) \ supp(T1)
and some nontrivial subsequence V1 of V | T1.
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It follows that σ(V1) = x, contrary to Claim 1.
Therefore, σ(U) is a unique expression element
of A+B, and Claim 2 follows from Lemma 2.1.

Claim 3. (A + B) ∩C = ∅.

Assume to the contrary that Claim 3 is false.
We have the following possibilities:

(a) σ(U)−x = σ(U)+σ(V1) with x ∈ supp(U)
and V1 | V; or

(b) σ(U) − x = σ(U) − z + σ(V1) with x ∈
supp(U), z ∈ supp(T0) \ supp(T1) and V1 | V .

Possibility (a) implies that σ(xV1) = 0. Since
V1 | V , T1 = UV and x ∈ supp(U), we must
have xV1 | T1. But this contradicts that T1
is zero-sum free. Possibility (b) implies that
σ(xV1) = z ∈ supp(T0) \ supp(T1). As before,
xV1 | T1, and now we have a contradiction to
Claim 1. This proves Claim 3.

Now, from (20), (22) and Claim 3, (21), Claim
2, (19), Lemma 2.7 applied to Σ(V) (note V | T1
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with T1 zero-sum free, so V is also zero-sum
free), (15) and the inclusion-exclusion princi-
ple, T1 = UV , T = T1T0, supp(S ) \ {0} ⊂
supp(T ) (which follows from the definition of
T ), and the trivial estimate | supp(U)∩supp(V)| ≥
0, we obtain

|Σ≥λ(T )| ≥ |A + B| + |C|
= |A + B| + |supp(U)|
≥ |A| + |B| − 1 + |supp(U)|
= | supp(T0) \ supp(T1)| + 1 + |Σ(V)| + |supp(U)|
≥ | supp(T0) \ supp(T1)| + |V | + | supp(V)| + |supp(U)|
= | supp(T0) \ supp(T1)| + |S | − n − 1 + |supp(UV)| + |supp(U) ∩ supp(V)|
= |S | − n − 1 + | supp(T0) \ supp(T1)| + | supp(T1)| + |supp(U) ∩ supp(V)|
= |S | − n − 1 + | supp(T )| + |supp(U) ∩ supp(V)|
≥ |S | − n − 2 + | supp(S )| + |supp(U) ∩ supp(V)|
≥ |S | − n − 2 + | supp(S )|.

If |Σ≥λ(T )| ≥ |S | − n + | supp(S )| − 1, then the
proof is complete. Otherwise, it forces equality
in all estimates used above. In particular,
(23)
supp(U)∩supp(V) = ∅ and |Σ(V)| = |V |+|supp(V)|−1.
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Now supp(U) ∩ supp(V) = ∅ is only possi-
ble, in view of the maximality of | supp(U) ∩
supp(V)|, if
V is the empty sequence or T1 = UV is square-free.
If V is empty, then (15) gives |S | = n+ |V |+1 =
n + 1. Clearly,
|Σn(S )| = |Σ|S |−1(S )| = |σ(S )−supp(S )| = | supp(S )| = |S |−n+| supp(S )|−1,
and we are done. So we may instead assume
|V | ≥ 1 and T1 = UV is square-free.

The estimate |Σ(V)| = |V | + |supp(V)| − 1 from
(23) can only hold, according to Lemma 2.7, if
(24) |S | − n − 1 = |V | ≤ 3,
where the first equality follows from (15). This
gives us three remaining cases based on the size
of |V | ∈ [1, 3].

If |V | = |S | − n − 1 = 3, then (14) ensures that
|T1| ≥ |S | −n+1 = 5. Consequently, since T1 =
UV is square-free, we can choose V such that
V either contains no element with order two or
at least two elements with order two (while still
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preserving that | supp(V)∩supp(U)| = 0 is max-
imal for the definition of U and V). But now
Lemma 2.7 ensures that |Σ(V)| ≥ |V |+|supp(V)|,
contrary to (23). Therefore it remains to con-
sider the cases when
(25) 2 ≤ |V | + 1 = |S | − n ≤ 3.

Note that |Σ≥λ(T )| = |σ(T ) − Σ∗
≤|T |−λ(T )| =

|Σ∗
≤|T |−λ(T )| = |{0} ∪ Σ≤|S |−n(T )| with |S | − n ∈

[2, 3]. It thus suffices to prove that
(26) |{0}∪Σ≤|S |−n(T )| ≥ |S |−n+ | supp(S )|−1
in the two remaining cases. Let D = {0} ∪
supp(T1). Since T1 is square-free and zero-sum
free, we have
(27)
|D| = |T1| + 1 and D+̇D = Σ≤2(T1).

Since 0 < supp(T ) (per definition of T ) with
T = T0T1, we have 0 < supp(T0) \ supp(T1).
Since T1 zero-sum free, we have 0 < Σ≤2(T1).
Thus, in view of T = T0T1 and Claim 1, it fol-
lows that supp(T0) \ supp(T1) and Σ≤2(T1) are
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both disjoint subsets of Σ≤2(T ) that do not con-
tain 0. Combining this with (25) and (27), we
obtain

|{0} ∪ Σ≤|S |−n(T )| ≥ |{0} ∪ Σ≤2(T )| ≥ 1 + | supp(T0) \ supp(T1)| + |Σ≤2(T1)|
= 1 + | supp(T0) \ supp(T1)| + |D+̇D|.(28)

It remains to estimate |D+̇D| using Lemmas 2.8
and 2.9.

Suppose |S |−n = 2. Then, in view of (27) and
(14), we have |D| = |T1| + 1 ≥ |S | − n + 2 = 4.
If supp(T1) ∪ {0} = D = 〈D〉 is an elemen-
tary 2 group, then 0 ∈ Σ3(T1), contradicting
that T1 is zero-sum free. Therefore we may as-
sume otherwise, in which case Lemma 2.8 and
(27) together imply |D+̇D| ≥ |D| = |T1| + 1 ≥
| supp(T1)| + 1. Applying this estimate in (28),
and recalling that T = T0T1 with | supp(T )| ≥
| supp(S )| − 1, we obtain

|{0} ∪ Σ≤|S |−n(T )| ≥ 1 + | supp(T0) \ supp(T1)| + | supp(T1)| + 1
= 2 + | supp(T )| ≥ 1 + | supp(S )| = |S | − n + | supp(S )| − 1.

Thus (26) is established in this case, as desired.
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It remains to consider the case when |S | − n =
3. Then, in view of (27) and (14), we have |D| =
|T1| + 1 ≥ |S | − n + 2 = 5. Let H = 〈D〉. If H
is an elementary 2-group, then |D| ≥ 5 ensures
that it must have size |H| ≥ 8. Consequently,
if |D| = | supp(T1) ∪ {0}| ≥ |H| − 1, then it is
easily seen that T1 will contain a 3-term zero-
sum subsequence, contradicting that T1 is zero-
sum free. On the other hand, if H is not an ele-
mentary 2-group and D = H, then there will be
some a ∈ D \ {0} = supp(T1) with ord(a) ≥ 3.
Since {0} ∪ supp(T1) = D = H ensures that we
also have −a ∈ supp(T1), and since a , −a in
view of ord(a) ≥ 3, it follows that T1 contains
a 2-term zero-sum, again contradicting that T1
is zero-sum free. Finally, since |D| ≥ 5, we
cannot have D = L ∪ (a + L) with L ≤ G
an order 2 subgroup. As a result, Lemma 2.9
and (27) together imply |D+̇D| ≥ |D| + 1 =
|T1| + 2 ≥ | supp(T1)| + 2. Applying this esti-
mate in (28), and recalling that T = T0T1 with
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| supp(T )| ≥ | supp(S )| − 1, we obtain
|{0} ∪ Σ≤|S |−n(T )| ≥ 1 + | supp(T0) \ supp(T1)| + | supp(T1)| + 2

= 3 + | supp(T )| ≥ 2 + | supp(S )| = |S | − n + | supp(S )| − 1.
Thus (26) is established in the final case, com-
pleting the proof. �
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4. Concluding Remarks

Let G be a finite abelian group with exponent
exp(G). Let S be a sequence over G with |S | ≥
|G| + 1 and 0 < Σ|G|(S ). When G is non-cyclic,
| supp(S )| ≤ |S |−|G|+1 and |S | ≥ |G|+exp(G)−
1, we can get better lower bounds for |Σ|G|(S )|
than those from Conjecture 1.2 (see Proposition
4.4). We need the following results.

Proposition 4.1. (Gao and Leader, 2005) Let
G be a finite abelian group and let S be a se-
quence over G with |S | ≥ |G|+1 and 0 < Σ|G|(S ).
Then there is a zero-sum free sequence T over G
such that |T | = |S |−|G|+1 and |Σ|G|(S )| ≥ |Σ(T )|.

For every integer k ∈ [1,D(G) − 1], let
fG(k) = min{|Σ(T )| : T ∈ F (G), |T | = k and 0 < Σ(T )}.

Proposition 4.2. Let G be a finite abelian group
that is noncyclic with exponent exp(G).

(1) If k ≥ exp(G), then fG(k) ≥ 2k − 1. (Olson
and White, 1975; Sun, 2007)
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(2) If k ≥ exp(G)+1, then fG(k) ≥ 3k−1. (Gao,
Li, Peng and Sun , 2008)

Proposition 4.3. (Pixton, 2009) Let G be a fi-
nite abelian group and let T be a zero-sum free
sequence over G.

(1) If the rank of 〈supp(T )〉 is at least 3, then
|Σ(T )| ≥ 4|T | − 5.

(2) If the rank of 〈supp(T )〉 is at least r, then
|Σ(T )| ≥ 2r|T | − (r − 1)2r − 1.

Let G be a finite abelian group of rank r =
r(G). For every t ∈ [1, r], define

dt(G) = max{D(H) : H ≤ G, r(H) = t},

where the maximum is taken as H runs over all
subgroups of G of rank t.

Proposition 4.4. Let G be a finite abelian group
that is noncyclic, let r = r(G) be the rank of G,
and let S be sequence over G with |S | ≥ |G| + 1
and 0 < Σ|G|(S ).
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(1) If |S | ≥ |G| + exp(G) − 1, then |Σ|G|(S )| ≥
2|S | − 2|G| + 1.

(2) If |S | ≥ |G| + exp(G), then |Σ|G|(S )| ≥ 3|S | −
3|G| + 2.

(3) If |S | ≥ |G|+dt−1(G)−1 with t ∈ [2, r], then
|Σ|G|(S )| ≥ 2t|S | − 2t|G| + (t − 2)2t − 1.

(4) If |S | ≥ |G| + d2(G) − 1, then |Σ|G|(S )| ≥
4|S | − 4|G| − 1.

Proof. We only prove Conclusion 3 here. The
other three conclusions can be proved in a simi-
lar way. By Proposition 4.1, there is a zero-sum
free sequence T over G with |T | = |S | − |G| + 1
and |Σ|G|(S )| ≥ |Σ(T )|. Since |T | = |S |−|G|+1 ≥
dt−1(G) and T is zero-sum free, the rank of 〈T 〉
is at least t. It follows from Proposition 4.3 that
|Σ|G|(S )| ≥ |Σ(T )| ≥ 2t|T |−(t−1)2t−1 = 2t(|S |−
|G|+1)−(t−1)2t−1 = 2t|S |−2t|G|−(t−2)2t−1.

�
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Given a fixed (and arbitrary) finite abelian group
G, it would be very difficult to give a sharp
lower bound for |Σ|G|(S )| involving | supp(S )|
in general. Indeed, even finding sharp lower
bounds when G is not fixed would be difficult,
though it would be expected that the improve-
ment be at least quadratic in | supp(S )|, rather
than linear. We end this section with the fol-
lowing open problem.

Conjecture 4.5. Let G be a finite abelian group
and let S be a sequence over G with |S | ≥ |G|+1
and 0 < Σ|G|(S ). Then there is a zero-sum free
sequence T over G of length |T | = |S | − |G| +
1 such that |Σ|G|(S )| ≥ |Σ(T )| and | supp(T )| ≥
min{|S | − |G| + 1, | supp(S )| − 1}.
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