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Mf , ∇ and ∆

Let ∇ denotes the gradient on L2(Rd), that is ∇ is the d-tuple
−i( ∂

∂x1
, ∂
∂x2
, . . . , ∂

∂xd
) of operators ∂

∂xj
of partial differentiation on L2(Rd).

Let Mf denotes the multiplication operator on L2(Rd) by a function f .
The Laplace operator −∆ is formally defined as ∇2. Connes trace formula
(or Connes integration formula) involves operator (1−∆)−d/2 which can
be also understood as the operator g(∇) defined with the help of usual
functional calculus, where g(t) = (1 + |t|2)−d/2, t ∈ Rd .

One of the most beautiful results in Noncommutative Geometry concerns
so-called Cwikel estimates for the singular values of the operator Mf g(∇)
on L2(Rd) in weak Schatten ideals L1,∞(L2(Rd)).
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Connes Integration Formula: the beginning

For any smooth compactly supported function f on Rd , Connes
established the following formula

trω(Mf (1−∆)−
d
2 ) = cd

∫
Rd

f (s)ds.

Here, trω is an arbitrary Dixmier trace (to be defined later).
This formula serves as a motivation for the general notion of the
noncommutative integral and is ubiquitous in noncommutative geometry.
In this talk, we provide a substantially stronger (and more general) version
of the Connes Integration Formula for noncommutative Euclidean space.
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Definitions and notations

General notations

Fix throughout a separable infinite dimensional Hilbert space H. We let
B(H) denote the algebra of all bounded operators on H. For a compact
operator T on H, let µ(k,T ) denote k−th largest singular value (these are
the eigenvalues of |T |). The sequence µ(T ) = {µ(k ,T )}k≥0 is referred to
as to the singular value sequence of the operator T . The standard trace on
B(H) is denoted by tr.
Fix an orthonormal basis in H (the particular choice of a basis is
inessential). We identify the algebra `∞ of bounded sequences with the
subalgebra of all diagonal operators with respect to the chosen basis. For
a given sequence α ∈ `∞, we denote the corresponding diagonal operator
by diag(α).
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Definitions and notations

Principal ideals Lp,∞

Let Lp,∞ be the principal ideal in B(`2) generated by the element

A0 = diag({(k + 1)−
1
p }k≥0). Equivalently,

Lp,∞ = {A : sup
k≥0

(k + 1)
1
pµ(k,A) <∞}.

In Noncommutative Geometry, a compact operator A is called an
infinitesimal of order 1

p if

µ(k ,A) = O((k + 1)−
1
p ), k ∈ Z+.

In other words, Lp,∞ is the set of all infinitesimals of order 1
p .
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Definitions and notations

Traces on L1,∞

Definition

A linear functional ϕ : L1,∞ → C is called a trace if ϕ(AB) = ϕ(BA) for
every A ∈ L1,∞ and for every B ∈ B(H).

The trace ϕ is called normalised if ϕ(diag({ 1
k+1}k≥0)) = 1.

There exists a plethora of (normalised) traces on L1,∞. The most famous
ones are Dixmier traces.
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Definitions and notations

Dixmier traces

An extended limit is a functional ω in `∞ which extends the “limit”
functional on the subspace c of convergent sequences and ‖ω‖`∗∞ = 1.
Extended limits exist by the Hahn-Banach theorem.

Definition (Dixmier)

If ω is an extended limit then the functional

A→ ω

(
1

log(n + 2)

n∑
k=0

µ(k ,A)

)
, 0 ≤ A ∈ L1,∞

is finite and additive on the positive cone of L1,∞. Thus, it uniquely
extends to a unitarily invariant linear functional on L1,∞. The latter is
called a Dixmier trace and is denoted by trω.
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Definitions and notations

Basic properties of traces

1 Every Dixmier trace is positive

2 Every positive trace is continuous with respect to the natural
quasi-norm on L1,∞

3 Every continuous trace is a linear combination of 4 positive traces.

4 There are positive traces which are not Dixmier traces

5 There exist discontinuous traces

6 There are 22N positive traces

More information on the traces is available in [LSZ].

Fedor Sukochev Connes Integration Formula May 14, 2018 8 / 25



Connes Integration formula for Rd

Cwikel estimates in L1,∞

We say that f ∈ `1(L2)(Rd) if∑
k∈Zd

‖f χk+K‖2 <∞.

Here, K = [0, 1]d .
The result below is (probably) due to Birman and Solomyak and is so far
the best available. However, for the proof of this result we refer to [LeSZ].

Theorem

If f ∈ `1(L2)(Rd), then

Mf (1−∆)−
d
2 ∈ L1,∞(L2(Rd)).
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Connes Integration formula for Rd

Connes Integration Formula II

The following result established in [CZ-JOT] (Section 4 there is fully
devoted to the proof of this result).

Theorem

If f ∈ `1(L2)(Rd), then

ϕ(Mf (1−∆)−
d
2 ) = cd

∫
Rd

f (s)ds

for every continuous normalised trace on L1,∞.

Observe that we have significantly weakened the assumption imposed on
the the function f comparatively with the original version due to Connes
and significantly extended to stock of singular traces for which the equality
above holds.
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Noncommutative Euclidean space

What is Noncommutative Euclidean space I

In Noncommutative Geometry, we replace the space with the algebra of
functions on this space. So, Rd is the ∗−algebra generated by elements
{xk}dk=1 satisfying the conditions

xk = x∗k , 1 ≤ k ≤ d ,

[xk1 , xk2 ] = 0, 1 ≤ k1, k2 ≤ d .

Now, let us distort the latter relations as follows:

[xk1 , xk2 ] = iθk1,k2 , 1 ≤ k1, k2 ≤ d .

Here, θ ∈ Md(R) is some skew-symmetric matrix.
It is natural to treat the algebra generated by the latter {xk}dk=1 as the
(algebra of functions on the) Noncommutative Euclidean space.
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Noncommutative Euclidean space

What is Noncommutative Euclidean space II

In Rd , the (coordinate) functions {xk}dk=1 are unbounded. So are the
elements {xk}dk=1 on the Noncommutative Euclidean space. It is
inconvenient to operate with unbounded operators (issues with domains
and the like). The standard procedure is to pass to the respective unitary
groups.
For t ∈ Rd , set

U(t) = exp(i
d∑

k=1

tkxk).

A formal manipulation with U(t)′s (explained on the next slide) yields

U(t + s) = e−
i
2
〈t,θs〉U(t)U(s), t, s ∈ Rd .

Fedor Sukochev Connes Integration Formula May 14, 2018 12 / 25



Noncommutative Euclidean space

Motivation for the definition of noncommutative Euclidean
space

Baker-Campbell Hausdorff formula states that (at the level of formal
power series)

exp(X ) exp(Y ) = exp(X + Y +
1

2
[X ,Y ] + · · · )

where the “· · · ” above means terms involving commutators with [X ,Y ].
Formally plugging in X = itjxj and Y = itkxk for tj , tk ∈ R, we then get

exp(itjxj) exp(itkxk) = exp(itjxj + itkxk +
1

2
[itjxj , itkxk ] + · · · )

= exp(itjxj + itkxk +
i

2
θj ,ktj tk).

More generally, if we denote for a vector t = (t1, . . . , td) ∈ Rd ,
U(t) := exp(it1x1 + it2x2 + · · ·+ itdxd), then we have the formal relation,

U(t + s) = exp(
i

2
〈t, θs〉)U(t)U(s).
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Noncommutative Euclidean space

Algebra of Canonical Commutation Relations

The following definition is from Bratteli and Robinson.

Definition

Let H be a real Hilbert space and let σ be a symplectic bilinear form (that
is a non-degenerate bilinear mapping on H × H satisfying
σ(f , g) + σ(g , f ) = 0 for all f , g ∈ H). CCR algebra is the universal
C ∗−algebra generated by the unitary operators {U(f )}f ∈H satisfying the
conditions

U(f + g) = e−
i
2
σ(f ,g)U(f )U(g), f , g ∈ H.

When H = Rd and

σ(t, s) = 〈t, θs〉, t, s ∈ Rd ,

we obtain the definition of a Noncommutative Euclidean space Rd
θ .
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Noncommutative Euclidean space

Formal definition of Noncommutative Euclidean space

We use a concrete representation of the Noncommutative Euclidean
Space. Namely, we set

(U(t)ξ)(u) = e−
i
2
〈t,θu〉ξ(u − t), ξ ∈ L2(Rd), u, t ∈ Rd . (1)

Definition

The von Neumann subalgebra in B(L2(Rd)) generated by {U(t)}t∈Rd ,
introduced in (1), is called the Noncommutative Euclidean space and
denoted by L∞(Rd

θ ).

The map t → U(t), t ∈ Rd , is the twisted left regular representation of
the Abelian group Rd for the 2-cocycle ω : (t, u)→ exp( i

2〈t, θs〉).
The von Neumann algebra L∞(Rd

θ ) is exactly the twisted group von
Neumann algebra W ∗(Rd , ω) for the group 2-cocycle ω.
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Noncommutative Euclidean space

Faithful normal semifinite trace on L∞(Rd
θ )

The following assertion is well-known. In [LeSZ], a spatial isomorphism is
constructed.

Theorem

For every non-degenerate antisymmetric real matrix θ, the algebra L∞(Rd
θ )

is isomorphic to B(L2(R
d
2 )).

Having established the isomorphism between r : L∞(Rd
θ )→ B(L2(R

d
2 )) we

now equip L∞(Rd
θ ) with a faithful normal semifinite trace τθ = Tr ◦ r .

We can now define Lp−spaces on L∞(Rd
θ ).

Lp(Rd
θ ) =

{
x ∈ L∞(Rd

θ ) : τθ(|x |p) <∞
}
.
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Noncommutative Euclidean space

Partial derivatives on L∞(Rd
θ ) I

In a sense, our picture extends the Fourier dual of the classical definition
of the Moyal plane. So what-should-be differentiation operator in the
classical setting is multiplication operator for us.
Let Dk , 1 ≤ k ≤ d be multiplication operators on L2(Rd)

(Dkξ)(t) = tkξ(t), ξ ∈ L2(Rd).

For brevity, we denote ∇ = (D1, · · · ,Dd) and −∆ =
∑d

k=1 D
2
k . For every

1 ≤ k ≤ d , we have

[Dk ,U(s)] = skU(s), s ∈ Rd . (2)
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Noncommutative Euclidean space

Partial derivatives on L∞(Rd
θ ) II

If [Dk , x ] ∈ B(L2(Rd)) for some x ∈ L∞(Rd
θ ), then [Dk , x ] ∈ L∞(Rd

θ ).
This crucial fact allows us to introduce mixed partial derivative ∂αx of
x ∈ L∞(Rd

θ ).

Definition

Let α be a multiindex and let x ∈ L∞(Rd
θ ). If every repeated commutator

[Dαj , [Dαj+1, · · · , [Dαn , x ]]], 1 ≤ j ≤ n, is a bounded operator on L2(Rd),
then the mixed partial derivative ∂αx of x is defined as

∂αx = [Dα1 , [Dα2 , · · · , [Dαn , x ]]].

In this case, we have that ∂αx ∈ L∞(Rd
θ ). As usual, ∂0x = x .
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Noncommutative Euclidean space

Sobolev spaces in L∞(Rd
θ )

We can introduce the Sobolev space Wm,p(Rd
θ ) associated with the

noncommutative plane in the following way.

Definition

For m ∈ Z+ and p ≥ 1, the space Wm,p(Rd
θ ) is the space of x ∈ Lp(Rd

θ )
such that every partial derivative of x up to order m is also in Lp(Rd

θ ).
This space is equipped with the norm,

‖x‖Wm,p =
∑
|α|≤m

‖∂αx‖p, x ∈Wm,p(Rd
θ ).
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Main results

Cwikel estimates in the Noncommutative Euclidean space

The following Cwikel-type estimate for the ideal L1,∞ and for the
Noncommutative Euclidean space is established in [LeSZ].

Theorem

If x ∈W d ,1(Rd
θ ), then

x(1−∆)−
d
2 ∈ L1,∞(L2(Rd)).
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Main results

Connes Integration Formula in the Noncommutative
Euclidean space

Theorem below is the main result of this talk. It is proved in [SZ-cmp].

Theorem

If x ∈W d ,1(Rd
θ ), then

ϕ(x(1−∆)−
d
2 ) = τθ(x)

for every normalised trace ϕ on L1,∞.
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Main results

Idea of the proof I

Since ϕ is unitarily invariant, it follows that

ϕ(x(1−∆)−
d
2 ) = ϕ(e i〈t,∇〉x(1−∆)−

d
2 e−i〈t,∇〉), t ∈ Rd .

Since e−i〈t,∇〉 commutes with (1−∆)−
d
2 , it follows that

ϕ(x(1−∆)−
d
2 ) = ϕ(e i〈t,∇〉xe−i〈t,∇〉(1−∆)−

d
2 ).

For every x ∈ L∞(Rd
θ ), we have

e i〈t,∇〉xe−i〈t,∇〉 = U(−θ−1t)xU(θ−1t).

Therefore,

ϕ(x(1−∆)−
d
2 ) = ϕ(U(−θ−1t)xU(θ−1t)(1−∆)−

d
2 ).
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Main results

Idea of the proof II

Consider the functional

F : x → ϕ(x(1−∆)−
d
2 ), x ∈W d ,1(Rd

θ ).

It is a well defined bounded linear functional on W d ,1(Rd
θ ). We have

F (x) = F (U(−θ−1t)xU(θ−1t)), x ∈ L∞(Rd
θ ), t ∈ Rd .

1 We show that F is bounded in the norm of L1(Rd
θ ) (not just

W d ,1(Rd
θ )).

2 We show that every bounded functional on L1(Rd
θ ) satisfying the

latter condition is proportional to τθ.
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