Connes Character Formula for locally compact spectral triples

Dmitriy Zanin (in collaboration with F. Sukochev)

University of New South Wales

May 14, 2018

1 / 20

In the beginning was the formula

The following assertion appears (without a proof) in the "Noncommutative Geometry" book.

Theorem (Character Formula)

If (A, H, D) is p-dimensional compact spectral triple, then

$$\oint \Omega(c) = \mathrm{Ch}(c)$$

for every Hochschild cycle $c \in \mathcal{A}^{\otimes (p+1)}$.

Here, $\mathrm{Ch}(c)$ is a Hochschild cocycle representing the Chern class and f is the noncommutative integral. $\Omega(c)$ is the 0—th order differential expression (to be defined later).

Connes advertised this formula as "local expression for the Hochschild class of Chern character". This formula was never proved by Connes; a number of authors attempted to prove it with various degrees of success.

General information

Let \mathcal{L}_{∞} be the *-algebra of all bounded operators on a given (separable, infinite dimensional) Hilbert space H.

An operator is called compact if it can be approximated (in norm topology, with any given precision) by a finite rank operator. Spectrum of a self-adjoint compact operator consists of non-zero eigenvalues of finite multiplicity converging to 0 (which may or may not be an eigenvalue). If A is compact, then |A| is compact. Eigenvalues of |A| are called singular values of A.

For a compact operator A, we define its singular value sequence $\mu(A) = (\mu(k,A))_{k \geq 0}$ by arranging the eigenvalues of |A| in the decreasing order and taking them with multiplicities.

Ideals and infinitesimals

An ideal $\mathcal I$ in $\mathcal L_\infty$ is a linear subspace (usually *not* closed in norm) such that $A\in\mathcal I$ and $B\in\mathcal L_\infty$ implies that $AB,BA\in\mathcal I$. Ideal is called principal if it is generated by a single element. Every non-trivial ideal in $\mathcal L_\infty$ consists of compact operators.

Principal ideal generated by the diagonal operator $\operatorname{diag}((\frac{1}{(k+1)^{1/p}})_{k\geq 0})$ is called $\mathcal{L}_{p,\infty}$. For every p>0, it is quasi-Banach (see next page). Equivalently,

$$\mathcal{L}_{p,\infty}=\Big\{A\in\mathcal{L}_{\infty}:\;\mu(k,A)=O((k+1)^{-rac{1}{p}})\Big\}.$$

In Connes ideology, these are "infinitesimals of order $\frac{1}{p}$ ".

Quasi-Banach ideals

Definition

An ideal $\mathcal I$ in $\mathcal L_\infty$ is called quasi-Banach when equipped with a complete quasi-norm $\|\cdot\|_{\mathcal I}$ such that

$$||AB||_{\mathcal{I}}, ||BA||_{\mathcal{I}} \leq ||A||_{\mathcal{I}}||B||_{\infty}.$$

For example, a natural quasi-norm on the ideal $\mathcal{L}_{p,\infty}$ is given by the formula

$$||A||_{p,\infty} = \sup_{k>0} (k+1)^{\frac{1}{p}} \mu(k,A).$$

When equipped with this quasi-norm, $\mathcal{L}_{p,\infty}$ becomes a quasi-Banach ideal. In fact, for p>1 its natural quasi-norm is equivalent to a norm.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

Traces on ideals

Definition

Let \mathcal{I} be an ideal in \mathcal{L}_{∞} . Linear functional $\varphi: \mathcal{I} \to \mathbb{C}$ is called trace if

$$\varphi(AB) = \varphi(BA), \quad A \in \mathcal{I}, \quad B \in \mathcal{L}_{\infty}.$$

Equivalently, $\varphi(U^{-1}AU)=\varphi(A)$ for all $A\in\mathcal{I}$ and for all unitary $U\in\mathcal{L}_{\infty}$. For p>1, ideal $\mathcal{L}_{p,\infty}$ does not carry any trace. For p=1, there is a plethora of traces. The most famous one is due to Dixmier.

Definition

Let ω be a free ultrafilter on \mathbb{Z}_+ . The mapping

$$\operatorname{Tr}_{\omega}:A o\lim_{n o\omega}rac{1}{\log(n+2)}\sum_{k=0}^n\mu(k,A),\quad 0\le A\in\mathcal{L}_{1,\infty}$$

is additive. Its linear extension to $\mathcal{L}_{1,\infty}$ is called Dixmier trace.

Further properties of traces

- Every Dixmier trace is positive.
- ② Every positive trace on $\mathcal{L}_{1,\infty}$ is continuous.
- § Every continuous trace on $\mathcal{L}_{1,\infty}$ is a linear combination of positive ones.
- **1** There are continuous traces on $\mathcal{L}_{1,\infty}$ which are not Dixmier traces.
- **5** There are traces on $\mathcal{L}_{1,\infty}$ which fail to be continuous.
- **1** There are $2^{2^{\mathbb{N}}}$ continuous traces on $\mathcal{L}_{1,\infty}$.
- **1** Every trace on $\mathcal{L}_{1,\infty}$ vanishes on \mathcal{L}_1 .

7 / 20

Spectral triples

In Connes ideology, spectral triples are noncommutative Riemannian manifolds.

Definition

Let \mathcal{A} be a *-algebra represented on a given Hilbert space H. Let D be an unbounded self-adjoint operator acting on H such that $\partial(a)=[D,a]$ is bounded for all $a\in\mathcal{A}$. If $a(D+i)^{-1}$ is compact for all $a\in\mathcal{A}$, then (\mathcal{A},H,D) is called spectral triple. It is called

- compact if $1 \in A$, so that $(D+i)^{-1}$ is compact operator; locally compact otherwise.
- ② p-dimensional if $a(D+i)^{-p}$ and $\partial(a)(D+i)^{-p}$ are in $\mathcal{L}_{1,\infty}$.
- **3** even if equipped with unitary $\Gamma = \Gamma^* : H \to H$ such that $\Gamma a = a\Gamma$ for all $a \in \mathcal{A}$, $D\Gamma + \Gamma D = 0$. odd if such Γ is not provided.

From spectral triples to Fredholm modules

In Connes ideology, Fredholm modules are noncommutative manifolds with conformal structure.

Definition

Let \mathcal{A} be a *-algebra represented on a given Hilbert space H. Let $F=F^*\in\mathcal{L}_{\infty}$ be unitary such that [F,a] is compact for all $a\in\mathcal{A}$. It is called p-dimensional if $[F,a]\in\mathcal{L}_{1,\infty}$.

Theorem

If (A, H, D) is p-dimensional spectral triple, then (A, H, F) (with $F = \operatorname{sgn}(D)$) is a p-dimensional Fredholm module.

9 / 20

Noncommutative integral

Definition

Let (A, H, D) be a p-dimensional spectral triple. Let φ be a trace on $\mathcal{L}_{1,\infty}$. For $X \in \mathcal{L}_{\infty}$, noncommutative integral is defined by the formula

$$\int X = \varphi(X(1+D^2)^{-\frac{p}{2}}).$$

There is a huge choice of traces on $\mathcal{L}_{1,\infty}$ and no reasonable way to chose one. We need to specify the class of elements for which noncommutative integral is well defined.

Definition

An element $X \in \mathcal{L}_{\infty}$ (typically, $X \in \mathcal{A}$ or like) is measurable if

$$\varphi(X(1+D^2)^{-\frac{p}{2}})$$

is well defined and does not depend on the choice of φ .

Hochschild cycles

Elements of $A^{\otimes n}$ are called n—chains.

The Hochschild boundary operator $b: A^{\otimes (n+1)} \to A^{\otimes n}$ is defined on elementary tensors $a_0 \otimes a_1 \otimes \cdots \otimes a_n$ by:

$$b(a_0 \otimes a_1 \otimes \cdots \otimes a_n) = a_0 a_1 \otimes a_2 \otimes \cdots \otimes a_n +$$

$$+ \sum_{k=1}^{n-1} (-1)^k a_0 \otimes \cdots \otimes a_k a_{k+1} \otimes \cdots \otimes a_n +$$

$$+ (-1)^n a_n a_0 \otimes a_1 \cdots \otimes a_{n-1}.$$

We say that chain c is a Hochschild cycle if bc = 0.

Hochschild cocycles

Multilinear functionals on $\mathcal{A}^{\otimes n}$ are called n-cochains.

The Hochschild coboundary operator is defined as follows: if $\theta: A^{\otimes n} \to \mathbb{C}$, then

$$(b\theta)(a_0\otimes\cdots\otimes a_n)=\theta(a_0a_1\otimes a_2\otimes\cdots\otimes a_n)+$$
 $+\sum_{k=1}^{n-1}(-1)^k\theta(a_0\otimes a_1\otimes\cdots\otimes a_{k-1}\otimes a_ka_{k+1}\otimes a_{k+2}\otimes\cdots\otimes a_n)+$
 $+(-1)^n\theta(a_na_0\otimes a_1\otimes a_2\otimes\cdots\otimes a_{n-1}).$

We say that cochain θ is a Hochschild cocycle if $b\theta = 0$.

Chern character

For $a = a_0 \otimes \cdots \otimes a_p \in \mathcal{A}^{\otimes (p+1)}$, we have

$$\prod_{k=0}^{p} [F, a_k] \in \prod_{k=0}^{p} \mathcal{L}_{p, \infty} = \mathcal{L}_{\frac{p}{p+1}, \infty} \subset \mathcal{L}_1.$$

Definition

Define a (p+1)-cochain by setting

$$\operatorname{Ch}(a_0\otimes\cdots\otimes a_p)=rac{1}{2}\operatorname{Tr}(\Gamma F\prod_{k=0}^p [F,a_k]).$$

This is a Hochschild cocycle called Chern character.

Main hypothesis

We require that

- spectral triple is infinitely smooth.
- ② spectral triple is p-dimensional, that is, for all $a \in \mathcal{A}$

$$a(D+i)^{-p}, \partial(a)(D+i)^{-p} \in \mathcal{L}_{1,\infty}.$$

 \bullet for all $a \in \mathcal{A}$

$$\left\|a(D+i\lambda)^{-p-1}\right\|_1, \left\|\partial(a)(D+i\lambda)^{-p-1}\right\|_1 = O(\lambda^{-1}).$$

Statement of the main result

Set

$$\Omega(a_0\otimes\cdots\otimes a_p)=\Gamma a_0\prod_{k=0}^p[D,a_k].$$

Theorem

Let (A, H, D) be a spectral triple satisfying the hypothesis. If $c \in A^{\otimes (p+1)}$ is a (local!) Hochschild cycle, then

$$\varphi(\Omega(c)(1+D^2)^{-\frac{p}{2}})=\mathrm{Ch}(c)$$

for every trace φ on $\mathcal{L}_{1,\infty}$.

Intermediate result 1: heat semigroup asymptotic

Theorem

Let (A, H, D) be a spectral triple satisfying the hypothesis. If $c \in A^{\otimes (p+1)}$ is a Hochschild cycle, then

$$\operatorname{Tr}(\Omega(c)(1+D^2)^{1-\frac{p}{2}}e^{-s^2D^2}) = \frac{p}{2}\operatorname{Ch}(c)s^{-2} + O(s^{-1}), \quad s \downarrow 0.$$

Proof is long and mostly combinatorial.

Intermediate result 2: analyticity of ζ -function

Theorem

Let (A, H, D) be a spectral triple satisfying hypothesis. If $c \in A^{\otimes (p+1)}$ is a Hochschild cycle, then the function

$$z \to \operatorname{Tr}(\Omega(c)(1+D^2)^{-\frac{z}{2}}), \quad \Re(z) > \rho,$$
 (1)

is holomorphic and has analytic continuation to the set $\{\Re(z)>p-1\}\setminus\{p\}$. The point z=p is a simple pole with residue $p\mathrm{Ch}(c)$.

Proof.

It follows from the formula

$$(1+D^2)^{-rac{z}{2}}=rac{1}{\Gamma(rac{z}{2})}\int_0^\infty s^{z-1}e^{-s^2(1+D^2)}ds.$$

Intermediate result 3: analyticity of ζ -function

The core component of the proof is:

Theorem

If $a \in A$, then the function

$$(1+D^2)^{-\frac{z}{2}}a^{2z}-(a(1+D^2)^{-\frac{1}{2}}a)^z$$

is \mathcal{L}_1 -valued analytic for $\Re(z) > p-1$.

Intermediate result 4: criterion for measurability

Theorem

If $0 \leq V \in \mathcal{L}_{1,\infty}$ and $A \in \mathcal{L}_{\infty}$ are such that

$$z \to \operatorname{Tr}(AV^{1+z})$$

is analytic for $\Re(z)>1-\epsilon$ (except at 0, where it has simple pole), then

$$\varphi(AV) = \mathrm{Res}_{z=0} \mathrm{Tr}(AV^{1+z})$$

for every trace φ on $\mathcal{L}_{1,\infty}$.

End of the proof

Suppose c is local, that is $(a \otimes 1^{\otimes p}) = c$. Then $a\Omega(c) = \Omega(c)$ and, moreover, $a^{2z}\Omega(c) = \Omega(c)$. We have

$$z \to \operatorname{Tr}(\Omega(c)(1+D^2)^{-\frac{z}{2}}a^{2z})$$

is analytic for $\Re(z)>p-1$ (with simple pole at z=p). Hence,

$$z o \operatorname{Tr}(\Omega(c)(a(1+D^2)^{-\frac{1}{2}}a)^z)$$

is analytic for $\Re(z) > p-1$ (with simple pole at z=p). Computing the residue, we complete the proof.

