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Linear symplectic spaces–1 2

Let V be an 2m-dimensional vector space over R with its dual
space V ∗, and let ω̃ : V × V → R be a bilinear form.

Definition The map ω̃∗ : V → V ∗ is the linear map defined by
ω̃∗(v)(u) = ω̃(v, u).

The kernel of ω̃∗ is the subspace U of V

Definition A skew-symmetric bilinear map ω̃ is symplectic if ω̃∗

is bijective, i.e., U = {0}. The map ω̃ is then called a linear
symplectic structure (or symplectic form) on V , and (V, ω̃) is
called a symplectic vector space.

We define

E⊥ω̃ = {u ∈ V | ω̃(u, v) = 0, ∀ v ∈ E}.
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Definition A linear subspace E of the symplectic vector space
(V, ω̃) is
isotropic, if E ⊂ E⊥ω̃ ,
coisotropic, if E ⊃ E⊥ω̃ ,
Lagrangian, if E = E⊥ω̃ ,
symplectic, if E ∩ E⊥ω̃ = {0}.

Example (R2n, ω0) with ω0 =

n∑
i=1

dxi ∧ dyi is the standard linear

symplectic space. ω0(u, v) = vTJu for J =

(
0 −In
In 0

)
.

L0 = {0}⊕Rn and L1 = Rn ⊕{0} are two Lagrangian subspaces.
The set of Lagrangian subspaces of (R2n, ω0) is denoted as Λ(n).
The symplectic group is defined by

Sp(2n) = {M ∈ L(R2n)|MTJM = J}.



Hamiltonian systems–1 4

For a smooth function H(t, x) with (t, x) ∈ R×R2n, the
nonlinear Hamiltonian system is the following

ẋ(t) = JH ′(t, x(t)).

Suppose x(t) is a solution of the above Hamiltonian system, the
linearized system at x(t) is the following linear Hamiltonian system

ż(t) = JB(t)z(t), (1)

where B(t) = H ′′(t, x(t)).
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There is a matrix function γ(t) such that any solution z(t) of the
system (1) satisfying the initial condition z(0) = z0 is

z(t) = γ(t)z0.

So the matrix function γ(t) should satisfy

γ̇(t) = JB(t)γ(t), γ(0) = I2n.

Thus we have γ(t)TJγ(t) = J , i.e., γ(t) ∈ Sp(2n) is a symplectic
path starting from the identity.
We denote by

P(2n) = {γ ∈ C([0, 1], Sp(2n)) | γ(0) = I2n}

the set of all continuous symplectic paths starting from identity.



Hamiltonian systems–3 6

For a smooth function H(t, x) with (t, x) ∈ R×R2n, and a
Lagrangian subspace L, the nonlinear Hamiltonian system with
L-boundary value problem is the following problem{

ẋ(t) = JH ′(t, x(t)),
x(0) ∈ L, x(1) ∈ L,

Correspondingly we have the following linear Hamiltonian system
with the same L-boundary value condition{

ż(t) = JB(t)z(t),
z(0) ∈ L, z(1) ∈ L, (2)

There is a method to classify the system (2), which is the
Maslov-type index theory with Lagrangian boundary conditions.
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Firstly, we consider a special case. Suppose
L = L0 = {0} ⊕Rn ⊂ R2n which is a Lagrangian subspace of the
linear symplectic space (R2n, ω0). For a symplectic path γ(t), we
write it in the following form:

γ(t) =

(
S(t) V (t)
T (t) U(t)

)
.

where S(t), T (t), V (t), U(t) are n× n matrices. The n vectors

coming from the column of the matrix

(
V (t)
U(t)

)
are linear

independent and they span a Lagrangian subspace of (R2n, ω0).
Particularly, at t = 0, this Lagrangian subspace is L0 = {0} ⊕Rn.
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We define the following two subsets of Sp(2n) by

Sp(2n)∗L0
= {M ∈ Sp(2n)| detVM 6= 0},

Sp(2n)0
L0

= {M ∈ Sp(2n)| detVM = 0},

for M =

(
SM VM
TM UM

)
.

P(2n)∗L0
= {γ ∈ P(2n)| γ(1) ∈ Sp(2n)∗L0

}

and
P(2n)0

L0
= {γ ∈ P(2n)| γ(1) ∈ Sp(2n)0

L0
}.

Definition We define the L0-nullity of any symplectic path
γ ∈ P(2n) by

νL0(γ) ≡ dim kerL0(γ(1)) := dim kerV (1) = n− rankV(1) (2.2)

with the n× n matrix function V (t) defined in (2.1).
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Example For the linear Hamiltonian system with B(t) = I2n:

ż(t) = Jz(t),

we have γ(t) = eJt =

(
In cos t −In sin t
In sin t In cos t

)
. It is an orthogonal

symplectic matrix. The n× n complex matrix from the last n
columes is In cos t+

√
−1In sin t is an unitary matrix with its

determinent en
√
−1t. For the general case, suppose γ ∈ P∗L0

(2n)
with

γ(t) =

(
S(t) V (t)
T (t) U(t)

)
.

Then we have

Q(t) = Qγ(t) = [U(t)−
√
−1V (t)][U(t) +

√
−1V (t)]−1

is a unitary matrix function. We should modify the end matrices to
define the index as an integer.
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So We denote by

M+ =

(
0 In
−In 0

)
, M− =

(
0 Jn
−Jn 0

)
, Jn = diag(−1, 1, · · · , 1).

It is clear that M± ∈ Sp(2n)±L0
= {M ∈ Sp(2n)| ± detVM > 0},

the two path connected components of Sp(2n)∗L0
. For a path

γ ∈ P(2n)∗L0
, we first adjoin it with a simple symplectic path

starting from J = −M+, i.e., we define a symplectic path by

γ̃(t) =

{
I cos (1−2t)π

2 + J sin (1−2t)π
2 , t ∈ [0, 1/2];

γ(2t− 1), t ∈ [1/2, 1]

then we choose a symplectic path β(t) in Sp(2n)∗L0
starting from

γ(1) and ending at M+ or M− according to γ(1) ∈ Sp(2n)+
L0

or

γ(1) ∈ Sp(2n)−L0
, respectively. We now define a joint path by

γ̄(t) = β ∗ γ̃ :=

{
γ̃(2t), t ∈ [0, 1/2],
β(2t− 1), t ∈ [1/2, 1].
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As above, we define

Q̄(t) = [Ū(t)−
√
−1V̄ (t)][Ū(t) +

√
−1V̄ (t)]−1. (2.6)

for γ̄(t) =

(
S̄(t) V̄ (t)
T̄ (t) Ū(t)

)
. We can choose a continuous function

∆̄ : [0, 1]→ R such that

detQ̄(t) = e
√
−1∆̄(t).

Definition For a symplectic path γ ∈ P(2n)∗L0
, we define the

L0-index of γ by

iL0(γ) =
1

2π
(∆̄(1)− ∆̄(0)).
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Suppose λj(t) = e
√
−1θj(t) are the eigenvalues of Qγ(t) for

j = 1, · · · , n.

Proposition (C. Liu 2007) For γ ∈ P(2n)∗L0
, with the above

notations, there holds

iL0(γ) =

n∑
j=1

[
θj(1)− θj(0)

2π

]
.

Definition For a symplectic path γ ∈ P(2n)0
L0

, we define the
L0-index of γ by

iL0(γ) = inf{iL0(γ̃)| γ̃ ∈ P∗L0
, and γ̃ is sufficiently close to γ}.
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For any Lagrangian subspace L, we know that the set of
Lagrangian subspaces in (R2n, ω0) denoted by Λ(n) satisfying
Λ(n) = U(n)/O(n), this means that for any Lagrangian subspace
L ∈ Λ(n), there is an orthogonal symplectic matrix

P =

(
A −B
B A

)
with A±

√
−1B ∈ U(n), such that PL0 = L.

P is uniquely determined by L up to an orthogonal matrix
C ∈ O(n).
We define the conjugated symplectic path γc ∈ P of γ by
γc(t) = P−1γ(t)P .

Definition For a symplectic path γ ∈ P, we define the L-index
of γ by

(iL(γ), νL(γ)) = (iL0(γc), νL0(γc)).
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Definition For two symplectic paths γ0, γ1 ∈ P(2n), we say
that they are L0-homotopic and denoted by γ0 ∼L0 γ1, if there
is a map δ : [0, 1]→ P such that δ(j) = γj for j = 0, 1, and
νL0(δ(s)) is constant for s ∈ [0, 1].

Theorem If γ0, γ1 ∈ P(2n)∗L0
, then iL0(γ0) = iL0(γ1) if and

only if γ0 ∼L0 γ1.

Theorem For any symplectic path γ ∈ P(2n), by using the
notations in above Proposition, there holds

iL0(γ) =

n∑
j=1

E

(
θj(1)− θj(0)

π

)
,

where E(a) = max{k ∈ Z| k < a}.
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Theorem (Homotopy invariant) For two path
γj ∈ P, j = 0, 1, if γ0 ∼L0 γ1, there hold

iL0(γ0) = iL0(γ1), νL0(γ0) = νL0(γ1).

M1 �M2 =


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 , L0 = L′0 ⊕ L′′0.

Theorem ( Symplectic addivity) For two path
γj ∈ P(nj), j = 1, 2, there holds

iL0(γ1 � γ2) = iL′0(γ1) + iL′′0 (γ2).
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For a general continuous symplectic path ρ : [a, b]→ Sp(2n) and
the Lagrangian subspace L0.

Definition We define

îL0(ρ) = iL0(γb)− iL0(γa), (3)

where γa ∈ P(2n) is a symplectic path ended at ρ(a) and
γb ∈ P(2n) is the composite of symplectic path γa and ρ, i.e.,
γb = ρ ∗ γa.
In general, for any Lagrangian subspace L, we define

îL(ρ) = iL(γb)− iL(γa). (4)

We remind that for the constant path γ = I there holds
iL0(I) = −n and iL1(I) = −n, so îL0(γ) = iL0(γ) + n and
îL1(γ) = iL1(γ) + n for γ ∈ P(2n).
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Theorem The index îL0 has the following properties

1 (Affine Scale Invariance). For k > 0, l ≥ 0, we have the affine
map ϕ : [a, b]→ [ka+ l, kb+ l] defined by ϕ(t) = kt+ l. For
a given continuous path ρ : [ka+ l, kb+ l]→ Sp(2n), there
holds

îL0(ρ) = îL0(ρ ◦ ϕ). (5)

2 (Homotopy Invariance rel. End Points). If
δ : [0, 1]× [a, b]→ Sp(2n) is a continuous map with
δ(0, t) = ρ1(t), δ(1, t) = ρ2(t), δ(s, a) = ρ1(a) = ρ2(a) and
δ(s, b) = ρ1(b) = ρ2(b) for s ∈ [0, 1], then

îL0(ρ1) = îL0(ρ2). (6)



Theorem (Continue Theorem)

3 (Path Additivity). If a < b < c, and ρ[a,c] : [a, c]→ Sp(2n) is
concatenate path of ρ[a,b] and ρ[b,c], then there holds

îL0(ρ[a,c]) = îL0(ρ[a,b]) + îL0(ρ[b,c]). (7)

4 (Symplectic Additivity). Let Lk0, ρk : [a, b]→ Sp(2nk),
k = 1, 2, L0 = L1

0 � L2
0, ρ = ρ1 � ρ2. Then we have

îL0(ρ) = îL1
0
(ρ1) + îL2

0
(ρ2). (8)

Here the symplectic direct sum of two Lagrangian subspaces
L′ and L′′ is defined by

L′ � L′′ = {(x′, x′′, y′, y′′)T | (x′, y′)T ∈ L′, (x′′, y′′)T ∈ L′′}.



Theorem (Continue Theorem)

5 (Symplectic Invarince) Let matrix P ∈ Sp(2n) be a symplectic
matrix. We have

îPL0(PρP−1) = îL0(ρ). (9)

6 (Normalization). For L0 = R and ρ : [−ε, ε]→ Sp(2) with
ε > 0 small and ρ(t) = eJt, we have

(i) îL0(ρ) = 1;

(ii) îL0(ρ[−ε,0]) = 0;

(iii) îL0(ρ[0,ε]) = 1.

(10)
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We are ready to define an index for a pair of a continuous
Lagrangian path f : [0, 1]→ Λ(n)× Λ(n) with
f(t) = (L1(t), L2(t)), 0 ≤ t ≤ 1. We know that there are
U1(t), U2(t) ∈ Osp(2n) such that Lj(t) = Uj(t)L0, then we have
the following definition.

Definition
î0(f) = îL0(γ12), (11)

where γ12(t) = U1(t)−1U2(t), 0 ≤ t ≤ 1.

For a general symplectic space V = (R2n, ω) and a path of
Lagrangian pair f : [a, b]→ Lag(V )× Lag(V ), by choosing a
linear symplectic map T : (R2n, ω)→ (R2n, ω0), we can define

î(f) = î0(TfT−1). (12)
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Theorem The definition is well defined. Furthermore î(f) has
the following properties

1 For k > 0, l ≥ 0, we have the affine map
ϕ : [a, b]→ [ka+ l, kb+ l] defined by ϕ(t) = kt+ l. For a
given continuous path
f : [ka+ l, kb+ l]→ Lag(V )× Lag(V ), there holds

î(f) = î(f ◦ ϕ). (13)

2 If δ : [0, 1]× [a, b]→ Lag(V )× Lag(V ) is a continuous map
with δ(0, t) = f1(t), δ(1, t) = f2(t), δ(s, a) = f1(a) = f2(a)
and δ(s, b) = f1(b) = f2(b) for s ∈ [0, 1], then

î(f1) = î(f2). (14)



Theorem (Continue the Theorem)

3 If a < b < c, and f[a,c] : [a, c]→ Lag(V )× Lag(V ) is
concatenate path of f[a,b] and f[b,c], then there holds

î(f[a,c]) = î(f[a,b]) + î(f[b,c]). (15)

4 Let fk : [a, b]→ Lag(Vk)× Lag(Vk), k = 1, 2, V = V1 ⊕ V2

f = f1 ⊕ f2. Then we have

î(f) = î(f1) + î(f2). (16)



Theorem (Continue the Theorem)

5 Let P (t) ∈ Sp(2n) be a symplectic path and
f(t) = (L1(t), L2(t)) ∈ Λ(n)× Λ(n). We define
(P∗f)(t) = (P (t)L1(t), P (t)L2(t)). Then we have

î0(P∗f) = î0(f). (17)

6 Let V0 = (R2, ω0). Define f : [−ε, ε]→ Λ(1)× Λ(1) with
ε > 0 small as a pair Lagrangian path:

f(t) = (R,R(cos t, sint)), t ∈ [−ε, ε].

Then
(i) î0(f) = 1,

(ii) î0(f[−ε,0]) = 0,

(iii) î0(f[0,ε]) = 1.

(18)
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Let V = (R2n, ω) be a symplectic vector space. The set of its
Lagrangian space is Lag(V ). A path of Lagrangian pair f is a
continuous map:

f : [a, b]→ Lag(V )× Lag(V )

for some interval [a, b], a < b. So
f(t) = (L1(t), L2(t)) ∈ Lag(V )× Lag(V ). The set of all paths of
Lagrangian pair is denote by P (V ).

Theorem There is a unique function µV : P (V )→ Z satisfying
the above axioms (1)-(6).

Remark S. E. Cappell, R. Lee and E. Y. Miller in Comm. Pure
Appl. Math. 1994 gave a proof of the above Theorem and
constructed four differential index theories satisfying the axioms
(1)-(6). So our definition is the fifth defined by differential method.
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Theorem Suppose γ ∈ Pτ (2n), for the iteration symplectic
paths γk defined in (21)-(22) below, when k is odd, there hold

iL0(γk) = iL0(γ1) +

k−1
2∑
i=1

iω2i
k

(γ2), (19)

when k is even, there hold

iL0(γk) = iL0(γ1) + iL0√
−1

(γ1) +

k
2
−1∑
i=1

iω2i
k

(γ2), (20)

where ωk = eπ
√
−1/k and iω(γ) is the ω index of the symplectic

path γ, and the index pair iL0√
−1

(γ1) is the L0-ω index of γ with

ω =
√
−1.
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Let N =

(
−I 0
0 I

)
, we have the Lagrangian subspace

L0 = Fixpoint(N). For γ ∈ P(2n), we define

γ2k−1(t) =


γ(t), t ∈ [0, 1],
Nγ(2− t)γ(1)−1Nγ(1), t ∈ [1, 2],
· · · · · ·
Nγ(2k − 2− t)Nγ(2)k−1, t ∈ [2k − 3, 2k − 2],
γ(t− 2k + 2)γ(2)k−1, t ∈ [2k − 2, 2k − 1],

(21)

γ2k(t) =


γ(t), t ∈ [0, 1],
Nγ(2− t)γ(1)−1Nγ(1), t ∈ [1, 2],
· · · · · ·
γ(t− 2k + 2)γ(2)k−1, t ∈ [2k − 2, 2k − 1],
Nγ(2k − t)Nγ(2)k, t ∈ [2k − 1, 2k].

(22)
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For the index theory and its iteration theory, we have the following
applications.

1. minimal periodic problem for brake orbits of nonlinear
Hamiltonian system.

2. subharmonic solutions of brake orbits of nonlinear Hamiltonian
system.

3. Seifert conjecture.

4. Conley conjecture in brake orbits.
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