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Linear symplectic spaces—1

Let V' be an 2m-dimensional vector space over R with its dual
space V*, and let © : V x V — R be a bilinear form.

The map w* : V. — V* is the linear map defined by

@*(v)(u) = (v, u).
The kernel of &* is the subspace U of V

A skew-symmetric bilinear map & is symplectic if w
is bijective, i.e., U = {0}. The map & is then called a linear
symplectic structure (or symplectic form) on V, and (V,®) is
called a symplectic vector space.

We define

Ete = {ueV|a(u,v) =0, Yve E}.

*



Linear symplectic spaces—2 \J

A linear subspace E of the symplectic vector space
(V,@) is

isotropic, if E C Eto,

coisotropic, if E D Et&,

Lagrangian, if E = E'@,

symplectic, if EN E+& = {0}.

n
Example (R?",wp) with wy = Z dx; A dy; is the standard linear
i=1

symplectic space. wo(u,v) = v’ Ju for J = ( IO _OI” )

n
Lyo={0}®R" and L; = R"® {0} are two Lagrangian subspaces.
The set of Lagrangian subspaces of (R?",wy) is denoted as A(n).
The symplectic group is defined by

Sp(2n) = {M € L(R*")| MTJM = J}.



Hamiltonian systems—1 \D

For a smooth function H(t,z) with (t,2) € R x R?", the
nonlinear Hamiltonian system is the following

i(t) = JH'(t, z(t)).

Suppose x(t) is a solution of the above Hamiltonian system, the
linearized system at x(t) is the following linear Hamiltonian system

£(t) = JB(t)z(t), (1)

where B(t) = H"(t, z(t)).



Hamiltonian systems—2 \ 5’

There is a matrix function «(¢) such that any solution z(t) of the
system (1) satisfying the initial condition z(0) = 2 is

So the matrix function (t) should satisfy
V() = JB()y(), ¥(0) = Iz

Thus we have y(t)T Jv(t) = J, ie., v(t) € Sp(2n) is a symplectic
path starting from the identity.
We denote by

P(2n) = {y € C([0,1],5p(2n)) [ 7(0) = Lan}

the set of all continuous symplectic paths starting from identity.



Hamiltonian systems—3 \ 6’

For a smooth function H(t,x) with (t,2) € R x R?", and a
Lagrangian subspace L, the nonlinear Hamiltonian system with
L-boundary value problem is the following problem

{ (t) = JH'(t, z(t)),
2(0) € L, z(1) € L,

Correspondingly we have the following linear Hamiltonian system
with the same L-boundary value condition

() = JB(t)z(t),
{ 20)e L, (1) € L, (2)

There is a method to classify the system (2), which is the
Maslov-type index theory with Lagrangian boundary conditions.



Maslov-type index theory—1 Q

Firstly, we consider a special case. Suppose

L= Ly={0} ® R" C R? which is a Lagrangian subspace of the
linear symplectic space (R?",wy). For a symplectic path ~(t), we
write it in the following form:

where S(t),T(t),V(t),U(t) are n x n matrices. The n vectors

coming from the column of the matrix ( gg; ) are linear
independent and they span a Lagrangian subspace of (R?",wy).
Particularly, at ¢ = 0, this Lagrangian subspace is Ly = {0} ® R".



Maslov-type index theory—2

We define the following two subsets of Sp(2n) by
Sp(2n)1, = {M € Sp(2n)|detVy # 0},
Sp(Zn)OLO = {M € Sp(2n)|detVy = 0},

Sy Vi
Ty Unm )’

P(2n)1, = {7 € P2n)|~(1) € Sp(2n)L,}

forM-(

and
P(2n)%, = {v € P(2n)|¥(1) € Sp(2n)7,}.

We define the Lo-nullity of any symplectic path
v € P(2n) by

vr, () = dimkerz,(v(1)) := dimker V(1) = n —rankV(1) (2.2)

with the n x n matrix function V(¢) defined in (2.1).



Maslov-type index theory—3 \D

Example For the linear Hamiltonian system with B(t) = I5,:
2(t) = J=(t),

I,cost —1I,sint
h t)=elt = " "
we have () = e ( I,sint I, cost
symplectic matrix. The n x n complex matrix from the last n

columes is I, cost + /—11,sint is an unitary matrix with its
determinent ¢V~ For the general case, suppose v € on(2n)

with
_ ([ S@) V()
0=( 20 o))
Then we have
Qt) = Qy(t) = [U(t) = V=1V (][U(t) + V-1V ()]

is a unitary matrix function. We should modify the end matrices to
define the index as an integer.

>. It is an orthogonal



Maslov-type index theory—4 10

So We denote by

M+:<(1[n é”l)’ M_:<0_Jn gn>7 Jn:dlag(_Ll)vl)

It is clear that M= € Sp(2n)7, = {M € Sp(2n)| + detVy > 0},
the two path connected components of Sp(2n)zo. For a path
v € P(2n)},., we first adjoin it with a simple symplectic path
starting from J = —M_, i.e., we define a symplectic path by

S(t) = I cos =207 Qt) + Jsin & 22t) , te]0,1/2];
v2t—1), te1/2,1]
then we choose a symplectic path 3(t) in Sp(2n)7, starting from
~(1) and ending at M or M_ according to (1) € Sp(2n)zo or
v(1) € Sp(2n)7,, respectively. We now define a joint path by

i A2, t €[0,1/2],
V() =Bx7:= { Z(Qt— 1), tel[l/2,1].



Maslov-type index theory-5 \D

As above, we define
O(t) = [U(t) — V-1V (@)][U(t) + V=1V ()] L. (2.6)

(St V() . .
for y(t) = ( W U ) We can choose a continuous function

A :[0,1] — R such that

detQ(t) = eV 1AM,

For a symplectic path v € P(2n)7, , we define the
Lo-index of v by

iro(7) = ——(A(1) - A(0)).

™



Maslov-type index theory—6

Suppose \j(t) = eV=10i(1) are the eigenvalues of Q,(t) for
j=1, ..

(C. Liu 2007) For v € P(2n)},, with the above
notations, there holds

o = 3 [BU=50),

J=1

For a symplectic path v € P(2n)} , we define the
Lg-index of v by

iry(v) = inf{i,(¥)| ¥ € Pyr,,and yissufficiently close to~}.



Maslov-type index theory—7

For any Lagrangian subspace L, we know that the set of
Lagrangian subspaces in (R?",wp) denoted by A(n) satisfying
A(n) =U(n)/O(n), this means that for any Lagrangian subspace
L € A(n), there is an orthogonal symplectic matrix

P = ( g le ) with A ++/—1B € U(n), such that PLy = L.

P is uniquely determined by L up to an orthogonal matrix
C € O(n).
We define the conjugated symplectic path . € P of v by
Ye(t) = Py (t)P.
For a symplectic path v € P, we define the L-index
of v by
(L (),ve(v)) = (ino(Ye)s VLo (Ve))-



The properties of the L-indices—1

For two symplectic paths 79,71 € P(2n), we say
that they are Lo-homotopic and denoted by ~y ~r, 71, if there

is a map ¢ : [0,1] = P such that §(j) = ; for j = 0,1, and
v, (0(s)) is constant for s € [0, 1].

If 0,71 € P(2n)3,, then iry(y0) = izo(m) if and
only if 4o ~py 71

For any symplectic path v € P(2n), by using the
notations in above Proposition, there holds

iz0(7) = glE E=u

where E(a) = max{k € Z| k < a}.



The properties of the L-indices—1

(Homotopy invariant) For two path
v €P, j=0,1, ifyg ~r, 71, there hold

iL0(70) = iL0(71>’ VLO('-YO) = VLO('-YI)'

A 0 By 0
o 0 A2 0 BQ T/ "

0 Cy 0 Dy

( Symplectic addivity) For two path
v; € P(nj), j = 1,2, there holds

iLg(71072) = igy () +iry(r2).



L-index for general symplectic paths—1

For a general continuous symplectic path p : [a,b] — Sp(2n) and
the Lagrangian subspace L.

Definition We define

io(p) = iLo(W) — Lo (Va), (3)

where v, € P(2n) is a symplectic path ended at p(a) and
Y € P(2n) is the composite of symplectic path 7y, and p, i.e.,

Yo = P * Ya-
In general, for any Lagrangian subspace L, we define

iz(p) = ir(1) — iz (va)- (4)
We remind that for the constant path v = I there holds

ELO(I) = —n and ZLl(I> = —n, SO %Lo(’y) — ZLO(’Y) +n and
ir, () = ir, (y) +n for v € P(2n).



L-index for general symplectic paths—2

The index iy, has the following properties

1 (Affine Scale Invariance). For k > 0, 1 > 0, we have the affine
map ¢ : [a,b] — [ka + 1, kb + 1] defined by ©(t) = kt + 1. For
a given continuous path p : [ka + 1, kb+ 1] — Sp(2n), there
holds X X

iLo(p) =iLe(po ). (5)

2 (Homotopy Invariance rel. End Points). If
0 :10,1] x [a,b] — Sp(2n) is a continuous map with
6(0,£) = p1(t), 6(1,¢) = pa(t), (s, a) = p1(a) = p2(a) and
d(s,b) = p1(b) = pa(b) for s € [0,1], then

iLe(p1) = iy (p2). (6)



(Continue Theorem)
3 (Path Additivity). If a <b < ¢, and p,  : [a,c] — Sp(2n) is
concatenate path of pqy and ppy, o, then there holds

i20(Pla) = 110 (Plap)) + Lo (Pp.q)- (7)

4 (Symplectic Additivity). Let LE, py, : [a,b] — Sp(2ny),
k=1,2, Lo = Ljo L% p= p1op2. Then we have

i20(p) = ira(p1) + iza(p2). (8)

Here the symplectic direct sum of two Lagrangian subspaces
L' and L" is defined by

L/<>L” _ {(x/7x//,y/,y//)T| (x/7y/>T c L/, (x//7y//)T c L”}.



Theorem




The index for paths of Lagrangian pair-1

We are ready to define an index for a pair of a continuous
Lagrangian path f:[0,1] — A(n) x A(n) with

f(t) = (L1(t), La(t)),0 <t < 1. We know that there are

Ui(t), Ua(t) € Osp(2n) such that L;(t) = U;(t)Lo, then we have
the following definition.

o
ZO(f) = iLo (’712)7 (11)

where y12(t) = U1 (t)'Ua(t), 0 <t < 1.

For a general symplectic space V = (R?",w) and a path of
Lagrangian pair f : [a,b] — Lag(V) x Lag(V'), by choosing a
linear symplectic map T": (R?",w) — (R?",wy), we can define

i(f) =io(TfT7H). (12)



The index for paths of Lagrangian pair—2

QLS The definition is well defined. Furthermore i(f) has
the following properties

1 Fork > 0,1>0, we have the affine map

¢ :[a,b] = [ka+1,kb+ ] defined by p(t) = kt + 1. For a
given continuous path

filka+1,kb+1] — Lag(V) x Lag(V'), there holds
iW(f) = i(f o). (13)
2 If§:]0,1] x [a,b] — Lag(V') x Lag(V) is a continuous map
with 6(0,1) = f1(t), 6(1,1) = fa(t), &(s,a) = fr(a) = fa(a)
and 6(s,b) = f1(b) = fa(b) for s € [0,1], then

i(f1) = i(f2). (14)



Theorem




(Continue the Theorem)

5 Let P(t) € Sp(2n) be a symplectic path and
f(t) = (L1(t), La(t)) € A(n) x A(n). We define
(P f)(t) = (P(t)L1(t), P(t)La(t)). Then we have

io(Pef) = to(f)- (17)
6 Let Vo = (R%,wy). Define f : [—¢,e] — A(1) x A(1) with
€ > 0 small as a pair Lagrangian path:

f(t) = (R,R(cost, sint)), t € [—¢,¢€].

Then .
(i) Wo(f) =1,
(i1) io(fico) =0, (18)
(#2) 10(fio.e)) = 1-



The index for paths of Lagrangian pair—3 22

Let V = (R?",w) be a symplectic vector space. The set of its
Lagrangian space is Lag(V'). A path of Lagrangian pair f is a
continuous map:

f :]a,b] — Lag(V) x Lag(V)

for some interval [a,b], a < b. So
f(t) = (L1(t), La(t)) € Lag(V') x Lag(V). The set of all paths of
Lagrangian pair is denote by P(V).

There is a unique function py : P(V') — Z satisfying
the above axioms (1)-(6).

S. E. Cappell, R. Lee and E. Y. Miller in Comm. Pure
Appl. Math. 1994 gave a proof of the above Theorem and
constructed four differential index theories satisfying the axioms
(1)-(6). So our definition is the fifth defined by differential method.



The iteration theory—-1

Suppose v € P-(2n), for the iteration symplectic
paths v* defined in (21)-(22) below, when k is odd, there hold

Lo (7 =ir,(y )+ Z ? 21 ), (19)
when k is even, there hold
b1
in(Y%) = ir,(v") + ’i%(’vl) +> i (%), (20)
i=1

where wy, = e™ /% and i, (v) is the w index of the symplectic
path v, and the index pair i%(fyl) is the Ly-w index of v with

w= v



The iteration theory—2

LetN—(

-1 0

7 )we have the Lagrangian subspace

Ly = Fixpoint(N). For v € P(2n), we define

) =

v (t) =

v(t), t €[0,1],
N~(2 = t)y(1)"'N~(1), t e [1,2],

...... (21)
Nv(2k — 2 — t)Ny(2)*1, t € [2k — 3,2k — 2],

Y(t — 2k +2)y(2)F 1, t € [2k — 2,2k — 1],

v(t), t € [0,1],

Nv(2 = t)y(1) 7 NA(1), t € [1,2],

...... (22)

Yt — 2k +2)y(2)F 1, t € 2k — 2,2k — 1],
Nv(2k —t)N~(2)F, t € [2k — 1, 2K].

26



Applications 0

For the index theory and its iteration theory, we have the following
applications.

1. minimal periodic problem for brake orbits of nonlinear
Hamiltonian system.

2. subharmonic solutions of brake orbits of nonlinear Hamiltonian
system.

3. Seifert conjecture.

4. Conley conjecture in brake orbits.
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