Boundedness and quasi-periodic solutions in nonlinear oscillations

Bin LIU,
School of Mathematical Sciences, Peking University

April 10, 2018

Problem

- J. Littlewood proposed to study the boundedness of solutions for

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+g(x)=p(t) \tag{1}
\end{equation*}
$$

where $g(x)$ satisfies $x g(x)>0$, and p is continuous and periodic in t.

- Example:

$$
\frac{d^{2} x}{d t^{2}}+x=\sin t
$$

- According to the growth of g as $x \rightarrow \infty$, the equation (1) is divided into three cases.
- Superlinear: $g(x) / x \rightarrow+\infty$.
- Sublinear: $g(x) / x \rightarrow 0$.
- Semilinear: $0<\kappa \leq g(x) / x \leq K<+\infty$.

Superlinear case

- Moser(1973) proposed to study the same problem for

$$
\frac{d^{2} x}{d t^{2}}+\alpha x+\beta x^{3}=p(t)
$$

where α, β are positive constants and p is continuous and periodic in t.

- The firts result obtained by G. Morris(1976), who proved the boundedness of solutions as well as the existence of quasi-periodic solutions for $\alpha=0, \beta=2$.
- R. Direckerhoff and E. Zehnder(1987) prove the same result for the following equation

$$
\frac{d^{2} x}{d t^{2}}+x^{2 n+1}+\sum_{j=0}^{2 n} p_{j}(t) x^{j}=0
$$

if p_{j} are smooth.

- M. Levi(1991) studied the following equation

$$
\frac{d^{2} x}{d t^{2}}+F(t, x)=0
$$

where F is C^{5} in t.

- Later, the smooth assumption on p_{j} are improved to C^{2} by X. Yuan(1998,2017).
- B. Liu $(1989,1992)$ proved the boundedness of solutions for equation

$$
\frac{d^{2} x}{d t^{2}}+\alpha(t) x+\beta x^{3}=p(t)
$$

for continuous α and p.

Sublinear case

- The first result obtained by T. Kupper and J. You(1991), who proved the boundedness of solutions for the equation

$$
\frac{d^{2} x}{d t^{2}}+|x|^{\alpha-1} x=p(t)
$$

where $0<\alpha<1$, p is smooth.

- B, Liu(2001) extended this result to general case

$$
\frac{d^{2} x}{d t^{2}}+g(x)=p(t)
$$

where p is also smooth.

- Open question: is there an example for p is only continuous?

Semilinear case

- The boundedness problem is more subtle.
- The first result is due to R. Ortega(1996)
- The Boundedness is obtained by him for the equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+a x^{+}-b x^{-}=1+\epsilon p(t) \tag{2}
\end{equation*}
$$

where $a \neq b$ two positive constants, ϵ small parameter, p smooth.

- B. Liu(1998) studies the following equations

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+n^{2} x+\phi(x)=p(t) \tag{3}
\end{equation*}
$$

where $\phi(x) \rightarrow \pm \infty$ as $x \rightarrow \pm \infty, p$ smooth.

- There is no small parameter!
- Ortega(1999) also study the above equation (3) under the assumption that ϕ is bounded.

More precisely, he assume that $\phi(x)$ is piecewise linear function

$$
\phi(x)= \begin{cases}-L, & x \leq-1 \\ L x, & -1 \leq x \leq 1 \\ L, & x \geq 1\end{cases}
$$

He prove that if

$$
\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} p(t) e^{i n t} d t\right|<\frac{2 L}{\pi}
$$

then all solutions of (3) are bounded.

- B. Liu (1999) drop the Ortega's assumption on ϕ. Under the condition

$$
\begin{equation*}
\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} p(t) e^{i n t} d t\right|<\frac{\phi(+\infty)-\phi(-\infty)}{\pi} \tag{4}
\end{equation*}
$$

we get the same conclusion.

- The inequality (4) is called Lazer-Landesman condition.
- Open Problem: what is happened if

$$
\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} p(t) e^{i n t} d t\right|=\frac{\phi(+\infty)-\phi(-\infty)}{\pi}
$$

- There is a result (B. Liu) for

$$
\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} p(t) e^{i n t} d t\right|=\frac{\phi(+\infty)-\phi(-\infty)}{\pi}=0
$$

- B. Liu(2004) also study the same problem when the function ϕ depend on time t.

Isochronous center: sigular case

- We(Capietto and Liu) study the existence of quasi-periodic solutions as well as boundedness of solutions for the equation

$$
\frac{d^{2} x}{d t^{2}}+V_{x}(x)=p(t)
$$

where p is a π-periodic function and, for $x>-1$

$$
V(x)=\frac{1}{2} x_{+}^{2}+\frac{1}{\left(1-x_{-}^{2}\right)^{\gamma}}-1, \quad \gamma>0
$$

- isochronous case: B. Liu(2009) considers the boundedness of solutions for isochronous center with singular potential function

$$
\frac{d^{2} x}{d t^{2}}+V_{x}(x)+g(x)=p(t)
$$

- For example

$$
V_{x}(x)=\frac{x+1}{4}-\frac{1}{4(1+x)^{3}}
$$

- The lazer-Landesman condition

$$
\lim _{\rho \rightarrow+\infty} \int_{0}^{2 \pi} g\left(\rho\left|\sin \frac{t}{2}\right|\right)\left|\sin \frac{t}{2}\right| d t>\int_{0}^{2 \pi} p(t+\theta)\left|\sin \frac{t}{2}\right| d t
$$

is needed.

- What will be happened if the above inequality is violated?

The tool for the proof: Invariant curves for area-preserving mapping

Consider the mapping

$$
\mathcal{M}: \quad \theta_{1}=\theta+\alpha(r)+\epsilon f(\theta, r), \quad r_{1}=r+\epsilon g(\theta, r),
$$

where f, g are smooth functions and $\alpha^{\prime} \neq 0$.

- Question: Under what conditions on f, g, the mapping \mathcal{M} has invariant curves.
- Example: $g=1$, there is no invariant curves!
- Condition: \mathcal{M} is area-preserving.
- Moser(1962) proved the existence of invariant curves for f and g smooth.

Theorem

Assume that f and g are bounded in $C^{p}(p>3)$. Then there exists $\epsilon_{0}>0$ such that the mapping \mathcal{M} has an invariant curve in the domain $\mathbb{R} \times[a, b]$ if $0<\epsilon<\epsilon_{0}$.

- This theorem can be used to prove the boundedness of solutions and the existence of quasi-periodic solutions for superlinear and sublinear cases.
- However, it seems that we cannot use it to study the same problem for semilinear equations.

Ortega(1999) study the following mapping

$$
\mathcal{M}_{\delta}:\left\{\begin{array}{l}
\theta_{1}=\theta+\beta+\delta I(\theta, r)+\delta f(\theta, r, \delta), \\
r_{1}=r+\delta m(\theta, r)+\delta g(\theta, r, \delta),
\end{array} \quad(\theta, r) \in \mathbb{R} \times[a, b],\right.
$$

where the functions I, m, f, g are 2π-periodic in $\theta, f(\theta, r, 0)=g(\theta, r, 0)=0$, β is a constant, $0<\delta<1$ is a small parameter.

Theorem

Assume that $\beta / 2 \pi$ is irrational and $I(\cdot, \cdot), m(\cdot, \cdot), f(\cdot, \cdot, \delta), g(\cdot, \cdot, \delta) \in C^{6}$ and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial l}{\partial r}(\theta, r) d \theta \neq 0
$$

Then there exists $\Delta_{0}>0$ such that the mapping \mathcal{M}_{δ} has an invariant curve in the domain $\mathbb{R} \times[a, b]$ if $0<\delta<\Delta_{0}$.

Theorem

Assume that $\beta=2 n \pi$ and $I(\cdot, \cdot), m(\cdot, \cdot), f(\cdot, \cdot, \delta), g(\cdot, \cdot, \delta) \in C^{6}$; furthermore, suppose that

$$
I>0, \quad \frac{\partial I}{\partial r}>0
$$

and there is a function $\Phi(\theta, r)$ such that

$$
\begin{gathered}
\Phi \in C^{6}, \quad \frac{\partial \Phi}{\partial r}>0 \\
I(\theta, r) \frac{\partial \Phi}{\partial \theta}+m(\theta, r) \frac{\partial \Phi}{\partial r} \equiv 0 .
\end{gathered}
$$

Then there exists $\Delta_{0}>0$ such that the mapping \mathcal{M}_{δ} has an invariant curve in the domain $\mathbb{R} \times[a, b]$ if $0<\delta<\Delta_{0}$.

The above two theorems can be generalized to quasi-periodic mappings.

$$
\mathcal{M}_{\delta}:\left\{\begin{array}{l}
\theta_{1}=\theta+\beta+\delta l(\theta, r)+\delta f(\theta, r, \delta), \\
r_{1}=r+\delta m(\theta, r)+\delta g(\theta, r, \delta)
\end{array}\right.
$$

$$
(\theta, r) \in \mathbb{R} \times[a, b]
$$

where the functions I, m, f, g are quasi-periodic in θ with the frequency ω, $f(\theta, r, 0)=g(\theta, r, 0)=0, \beta$ is a constant, $0<\delta<1$ is a small parameter.

Theorem

Assume that $\omega_{1}, \omega_{2}, \cdots, \omega_{n}, 2 \pi / \beta$ are rationally independent, $I(\cdot, \cdot), m(\cdot, \cdot), f(\cdot, \cdot, \delta), g(\cdot, \cdot, \delta) \in C^{p}(p>2 \tau+1>2 n+1)$ and

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \frac{\partial I}{\partial r}(\theta, r) d \theta \neq 0
$$

Then there exists $\Delta_{0}>0$ such that the mapping \mathcal{M}_{δ} has an invariant curve in the domain $\mathbb{R} \times[a, b]$ if $0<\delta<\Delta_{0}$. The invariant curve is quasi-periodic with the frequency ω.

The functions I and m can be represented in the form

$$
\begin{aligned}
I(\theta, r):=\widetilde{I}(\theta, r)+\bar{I}(\theta, r) & =\sum_{k \in \mathbb{Z}^{n} \backslash \mathbb{K}} I_{k}(r) e^{i\langle k, \omega\rangle \theta}+\sum_{k \in \mathbb{K}} I_{k}(r) e^{i\langle k, \omega\rangle \theta} \\
& =\sum_{k \in \mathbb{Z}^{n} \backslash \mathbb{K}} I_{k}(r) e^{j\langle k, \omega\rangle \theta}+\sum_{\ell \in \mathbb{Z}} l_{\ell k^{0}}(r) e^{\left(2 j j_{0} \pi / \beta\right) i \epsilon \theta},
\end{aligned}
$$

$$
\begin{aligned}
m(\theta, r):=\widetilde{m}(\theta, r)+\bar{m}(\theta, r) & =\sum_{k \in \mathbb{Z}^{n} \backslash \mathbb{K}} m_{k}(r) e^{i(k, \omega\rangle \theta}+\sum_{k \in \mathbb{K}} m_{k}(r) e^{i(k, \omega\rangle \theta} \\
& =\sum_{k \in \mathbb{Z}^{\eta} \backslash \mathbb{K}} m_{k}(r) e^{i(k, \omega\rangle \theta}+\sum_{\ell \in \mathbb{Z}} m_{\ell k^{0}}(r) e^{(2 j \dot{j} \pi / \beta) i \ell \theta} .
\end{aligned}
$$

$$
\bar{l}(\theta+\beta, r) \equiv \bar{l}(\theta, r), \quad \bar{m}(\theta+\beta, r) \equiv \bar{m}(\theta, r) .
$$

Theorem

- Suppose that the functions I, m, f, g satisfy

$$
\begin{gathered}
I(\cdot, \cdot) \in C^{p+2}(p>2 \tau+1>2 n+1), \quad \bar{l}(\theta, r)>0, \quad \frac{\partial \bar{l}(\theta, r)}{\partial r}>0 \\
m(\cdot, \cdot), \quad f(\cdot, \cdot, \delta), \quad g(\cdot, \cdot, \delta) \in C^{p+1}
\end{gathered}
$$

- There is a function $L(\theta, r) \equiv L(\theta+\beta, r)$ satisfying

$$
\begin{gather*}
L \in C^{p+2}, \quad \frac{\partial L(\theta, r)}{\partial r}>0 \tag{5}\\
\bar{I}(\theta, r) \frac{\partial L}{\partial \theta}(\theta, r)+\bar{m}(\theta, r) \frac{\partial L}{\partial r}(\theta, r) \equiv 0 \tag{6}
\end{gather*}
$$

and two numbers \widetilde{a} and \widetilde{b} such that

$$
a<\widetilde{a}<\tilde{b}<b
$$

and

$$
\begin{equation*}
L_{\max }(a)<L_{\min }(\widetilde{a}) \leq L_{\max }(\widetilde{a})<L_{\min }(\widetilde{b}) \leq L_{\max }(\widetilde{b})<L_{\min }(b) \tag{7}
\end{equation*}
$$

$$
L_{\min }(r):=\min _{\theta \in \mathbb{R}} L(\theta, r), \quad L_{\max }(r):=\max _{\theta \in \mathbb{R}} L(\theta, r)
$$

Then there exists $\Delta_{0}>0$ such that if $\delta<\Delta_{0}$, the mapping \mathcal{M}_{δ} has an invariant curve which is quasi-periodic with the frequency $\omega=\left(\omega_{1}, \omega_{2}, \cdots\right.$, $\left.\omega_{n}\right)$. The constants Δ_{0} depend only on $a, b, \widetilde{a}, \widetilde{b}, I(\theta, r), m(\theta, r)$ and $L(\theta, r)$.

Application

Consider the following equation

$$
\begin{equation*}
x^{\prime \prime}+a x^{+}-b x^{-}=f(t) \tag{8}
\end{equation*}
$$

where a, b are two different positive constants, $x^{+}=\max \{x, 0\}$, $x^{-}=\max \{-x, 0\}, f(t)$ is smooth quasi-periodic function with the frequency $\omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$.

Action and angle variables

Introduce a new variable $y=x^{\prime}$, then (8) is equivalent to the following planar system

$$
\left\{\begin{array}{l}
x^{\prime}=y \tag{9}\\
y^{\prime}=-a x^{+}+b x^{-}+f(t)
\end{array}\right.
$$

Let $C(t)$ be the solution of the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+a x^{+}-b x^{-}=0 \\
x(0)=1, x^{\prime}(0)=0
\end{array}\right.
$$

Then it is well known that $C(t) \in C^{2}(\mathbb{R})$ which can be given by

$$
C(t)= \begin{cases}\cos \sqrt{a} t, & |t| \in\left[0, \frac{\pi}{2 \sqrt{a}}\right], \\ -\sqrt{\frac{a}{b}} \sin \sqrt{b}\left(|t|-\frac{\pi}{2 \sqrt{a}}\right), & |t| \in\left[\frac{\pi}{2 \sqrt{a}}, \frac{\pi}{2 \sqrt{a}}+\frac{\pi}{2 \sqrt{b}}\right] .\end{cases}
$$

Define $S(t)$ be the derivative of $C(t)$, then $S(t) \in C^{1}(\mathbb{R})$ and
(i) $C(-t)=C(t), S(-t)=-S(t)$.
(ii) $C(t)$ and $S(t)$ are $2 \omega_{0} \pi$-periodic functions, $\omega_{0}=\frac{1}{2}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)$.
(iii) $S^{2}(t)+a\left(C^{+}(t)\right)^{2}+b\left(C^{-}(t)\right)^{2} \equiv a$.

For $r>0, \theta(\bmod 2 \pi)$, we define the following generalized polar coordinates $T:(r, \theta) \rightarrow(x, y)$ as

$$
\left\{\begin{array}{l}
x=\varrho r^{\frac{1}{2}} C\left(\omega_{0} \theta\right), \\
y=\varrho r^{\frac{1}{2}} S\left(\omega_{0} \theta\right),
\end{array}\right.
$$

where $\varrho=\sqrt{\frac{2}{a \omega_{0}}}$. It is easy to check that T is a symplectic transformation.
system (9) is changed into the following generalized polar coordinate system

$$
\left\{\begin{array}{l}
\theta^{\prime}=\omega_{0}^{-1}-\frac{1}{2} \varrho C\left(\omega_{0} \theta\right) f(t) r^{-\frac{1}{2}}, \tag{10}\\
r^{\prime}=\omega_{0} \varrho S\left(\omega_{0} \theta\right) f(t) r^{\frac{1}{2}} .
\end{array}\right.
$$

Now we change the role of the variable t and θ, and yields that

$$
\left\{\begin{array}{l}
\frac{d t}{d \theta}=\left[\omega_{0}^{-1}-\frac{1}{2} \varrho C\left(\omega_{0} \theta\right) f(t) r^{-\frac{1}{2}}\right]^{-1} \tag{11}\\
\frac{d r}{d \theta}=\omega_{0} \varrho S\left(\omega_{0} \theta\right) f(t) r^{\frac{1}{2}}\left[\omega_{0}^{-1}-\frac{1}{2} \varrho C\left(\omega_{0} \theta\right) f(t) r^{-\frac{1}{2}}\right]^{-1}
\end{array}\right.
$$

which is 2π-periodic in the new time variable θ. Let r_{*} be a positive number such that

$$
\omega_{0}^{-1}-\frac{1}{2} \varrho r_{*}^{-\frac{1}{2}}|C||f|>0 .
$$

System (11) is well defined for $r \geq r_{*}$. Let $(t(\theta), r(\theta))$ be a solution of (11) defined in a certain interval $I=\left[\theta_{0}, \theta_{1}\right]$ and such that $r(\theta)>r_{*}$ for all θ in I. The derivative $\frac{d t}{d \theta}$ is positive and the function t is a diffeomorphism from I onto $J=\left[t_{0}, t_{1}\right]$, where $t\left(\theta_{0}\right)=t_{0}$ and $t\left(\theta_{1}\right)=t_{1}$. The inverse function will be denoted by $\theta=\theta(t)$. It maps J onto I.

The expression of the Poincaré map of (11)

The Poincaré map P of (11) has the expansion

$$
P:\left\{\begin{array}{l}
t_{1}=t_{0}+2 \omega_{0} \pi+\frac{1}{2} \omega_{0}^{2} \varrho r_{0}^{-\frac{1}{2}} \int_{0}^{2 \pi} C\left(\omega_{0} \theta\right) f\left(t_{0}+\omega_{0} \theta\right) d \theta+O\left(r_{0}^{-1}\right) \\
r_{1}^{\frac{1}{2}}=r_{0}^{\frac{1}{2}}+\frac{1}{2} \omega_{0}^{2} \varrho \int_{0}^{2 \pi} f\left(t_{0}+\omega_{0} \theta\right) S\left(\omega_{0} \theta\right) d \theta+O\left(r_{0}^{-\frac{1}{2}}\right)
\end{array}\right.
$$

- Assume that f has the following Fourier series

$$
f(t)=\sum_{k} f_{k} e^{i\langle k, \omega\rangle t}
$$

$$
\begin{equation*}
L\left(t_{0}\right)=\int_{0}^{2 \pi} f\left(t_{0}+\omega_{0} \theta\right) C\left(\omega_{0} \theta\right) d \theta \neq 0, \quad \text { for all } t_{0} \in \mathbb{R} \tag{12}
\end{equation*}
$$

Theorem

If $f(t) \in C^{p}(p>2 n+1)$ satisfies (12), $\left\langle k, \omega \omega_{0}\right\rangle \notin \mathbb{Z}$ for any $k \in \mathbb{Z}^{n} \backslash\{0\}$. Then system (9) has infinitely many quasi-periodic solutions and all solution are bounded.

Theorem

If $f(t) \in C^{p}(p>2 n+3)$ satisfies (12), $\left\langle k, \omega \omega_{0}\right\rangle \in \mathbb{Z}$ for some $k \in \mathbb{Z}^{n}$. Denote by \mathbb{K} the lattice of \mathbb{Z}^{n} such that $\left\langle k, \omega \omega_{0}\right\rangle \in \mathbb{Z}$ for $k \in \mathbb{K}$ and $\left\langle k, \omega \omega_{0}\right\rangle \notin \mathbb{Z}$ for $k \notin \mathbb{K}$, by $f_{\mathbb{K}}(t)$ the function

$$
f_{\mathbb{K}}(t)=\sum_{k \in \mathbb{K}} f_{k} e^{i\langle k, \omega\rangle t}
$$

Moreover, if

$$
\Phi_{\mathbb{K}}\left(t_{0}\right)=\frac{\omega_{0}^{2} \varrho}{2} \int_{0}^{2 \pi} f_{\mathbb{K}}\left(t_{0}+\omega_{0} \theta\right) C\left(\omega_{0} \theta\right) d \theta \neq 0, \quad \text { for all } t_{0} \in \mathbb{R}
$$

Then system (9) has many quasi-periodic solutions and all solutions are bounded.

Thank you!

