
Asymptotic Theory of Groups

E. Zelmanov

1 / 19



Introduction

Assume known: the concept of a GROUP.

G a group, ϕi : G → Gi , |Gi | <∞ homomorphisms,⋂
i

kerϕi = (1).

G is residually finite

Ex.1 A finitely generated group of matrices;

Ex.2 Fm the free group on m free generators x1, . . . , xm;

Ex.3 K/F an infinite Galois extension, Gal(K/F ).
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Introduction

Infinite Groups

Hopelessly Infinite Residually Finite

(Geometric Group Theory) (Number Theory, Combinatorics)

These classes behave differently.

The Burnside Problem (1902)

G = 〈a1, . . . , am〉, ∃n : ∀g ∈ G gn = 1
?

=⇒ |G | <∞.

More generally, what makes a group finite?

No (Novikov-Adian, 1968)

For Residually Finite Groups: YES (E.Z., 1991)
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Expanders

Expanders.

Γ = (V ,E ) finite connected graph, ∅ 6= W ⊂ V ,

∂W = {v ∈ V | v /∈ W , dist(v ,W ) = 1}

u W

#
"

 
!

u v
W ↪→ (W ∪ ∂W ) ↪→ . . .

Definition. ε > 0; Γ is an ε-expander if ∀∅ 6= W ⊂ V such

that |W | ≤ 1

2
|V |

|W ∪ ∂W | ≥ (1 + ε)|W |.
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Expanders

Wanted: infinite family of k-regular graphs Γn = (Vn,En) that are
all ε-expanders; k , ε are fixed, |Vn| → ∞.

Pinsker, 70s; Barzdin-Kolmogorov, 60s

G = 〈X 〉 finite group

Cay(G ,X ) Cayley Graph

V = G

ug1 ���
���

if g2 = x±1g1, x ∈ X .

u g2

Connected 2|X |-regular graph.
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Expanders

Kazhdan (1967): ∃ groups G = 〈X 〉, |X | <∞, with the following
property:

Property (T)

∃ε > 0 ∀unitary representation ρ : G → U(H) without 6= 0 fixed

points: ∀h ∈ H ∃x ∈ X ||xh − h|| ≥ ε||h||.

For example, G = SL(n,Z), n ≥ 3.

G. Margulis (1981): G = 〈X 〉, |X | < ∞, residually finite & has

property (T); ϕ : G → Gi , |Gi | <∞, X → Xi , Gi = 〈Xi〉.
Then {Cay(Gi ,Xi)}i is an expander family.

Kassabov, Lubotzky, Breuillard, Green, Tao: any infinite family of
finite simple groups  expander family.

6 / 19



Growth of Groups

Growth of Groups.

G a group, G = 〈x1, . . . , xm〉

B(n) =
{
x±1
i1
· · · x±1

ik
, k ≤ n

}
⋃
n≥1

B(n) = G .

B(n) = ball of radius n with the center at 1 in Cay(G ,X ).

g(X , n) = |B(n)| <∞

g(1) ≤ g(2) ≤ . . . growth function

Unfortunately, g(X , n) depends on X .
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Growth of Groups

N = {1, 2, . . .}
f , g : N→ [1,∞)

Definition. f ≤ g asymptotically less than or equal to g if ∃c ≥ 1:

f (n) ≤ c g(cn) for all n.

If f ≤ g , g ≤ f then f ∼ g asymptotically equivalent.

If G = 〈X 〉 = 〈Y 〉, |X | <∞, |Y | <∞ then

g(X , n) ∼ g(Y , n).

Growth of G = class of equivalence.
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Growth of Groups

J. Milnor (1968):

(1) is it true that the growth of a group is polynomially bounded

iff G B H , |G : H | <∞, H is nilpotent?

(2) Do there exist groups of intermediate growth?

Both problems were solved at about the same time in 1980-1982.
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Growth of Groups

Gromov: groups of polynomial growth.

G  Cay(G ) metric space

G acts on Cay(G ) by isometries g : x → xg , x ∈ G

Cay(G ) Rn.

G acts on Rn, G → GL(n,R) linear group.
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Growth of Groups

Grigorchuk: groups of intermediate growth.

T = G ≤ Aut(T )

. . . . . . . . .

Now Branch Groups or Fractal Groups

 Dynamical Systems, Number Theory, etc. etc.
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Growth of Algebras

Algebras: F a field, A = F -algebra generated by a finite dimen-

sional subspace V .

V n =
∑

V · · ·V︸ ︷︷ ︸
k

, k ≤ n,

V 1 ⊆ V 2 ⊆ . . . ,
⋃

V n = A,

g(V , n) = dimF (V n).

If g(V , n) ≤ nd (polynomially bounded) then the minimal such

d = Gelfand-Kirillov dimension of A.
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Approximate Groups

Approximate Groups.

G a group, A ⊂ G a subset (symmetric: A = A−1), k ≥ 1.

The properties:

(1) for x , y ∈ A xy−1 ∈ A with probability ≥ 1

k
;

(2) |A2| ≤ k |A|;

(3) A2 is covered by k right translates of A, A2 ⊆
k⋃

i=1

Agi ,

 to the same theories.

A is a k-approximate group.
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Approximate Groups

Examples.

(i) A = {n | −N ≤ n ≤ N} is a 2-approximate group in Z.

(ii) d-dimensional arithmetic progression

A = {n1x1 + . . . + ndxd | |ni | ≤ Ni} ⊂ Z

is a 2d -approximate subgroup

• No fast expansion  approximate subgroups

• Polynomial growth (Gromov’s Theorem)

 balls of radius n are nice approximate subgroups.
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Approximate Groups

Freiman-Ruzsa: A ⊆ Z a k-approximate subgroup

⇒ A ⊆ P = {n1x1+ . . .+ndxd | |ni | ≤ Ni}, d ≤ k ,
|P |
|A|
≤ f (k).

Helfgott, Gamburd-Bourgain-Sarnak, Hrushovski, Breuillard-Green-

Tao, Pyber-Szabo, . . . ⇒ a noncommutative version for linear

groups.

Side Effects: better understanding (efficient version) of Gromov’s

theorem, a new approach to Hilbert’s 5th Problem.
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Profinite and Pro-p Groups

Profinite and Pro-p Groups.

G residually finite⋂
{H C G | |G : H | <∞} = (1).

Basis of neighborhoods of 1

The topology is complete = profinite group = inverse limit of finite
groups.

Ĝ = completion of G , G ↪→ Ĝ

In any case

G −→ G/
⋂
{H C G | |G : H | <∞} −→ Ĝ
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Profinite and Pro-p Groups

Example. K/F infinite Galois extension of fields, Gal(K/F ) is

profinite.

p a prime number, ϕi : G → Gi , Gi are finite p-groups,⋂
i

kerϕi = (1). Then G is residually-p.

Complete topology = pro-p group = inverse limit of finite p-
groups.

Gp̂ pro-p completion, G ↪→ Gp̂.

In any case

G −→ G/
⋂{

H C G
∣∣ |G : H | = pk , k ≥ 0

}
−→ Gp̂
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Profinite and Pro-p Groups

Ex.1 Fm the free group on x1, . . . , xm; ∀p residually-p,

(Fm)p̂ free pro-p group.

Ex.2 Zp p-adic integers, GL1(n,Zp) = 1n +pMn(Zp) pro-p group.

M. Lazard (1965): ∀p-adic Lie group has an open subgroup that

is ↪→ GL1(n,Zp).

Ex.2’ GL1(n,R), R more general commutative rings.
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Profinite and Pro-p Groups

Polynomial identity: 1 6= w(x1, . . . , xm) ∈ (Fm)p̂

∀g1, . . . , gm ∈ G w(g1, . . . , gm) = 1.

(p-adic Lie groups) ⊂ (PI-groups)

Possible application

Fontaine-Mazur Conjecture:

∀ρ : Gal(K/Q) −→ GL1(n,R) the image of ρ is finite.
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