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Introduction

Assume known: the concept of a GROUP.

G a group, p; : G — G;, |G;| < oo homomorphisms,
(ker¢; = (1).

G is residually finite

Ex.1 A finitely generated group of matrices;
Ex.2 F,, the free group on m free generators xq, ..., Xm;

Ex.3 K/F an infinite Galois extension, Gal(K/F).
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Introduction

Infinite Groups

T,

Hopelessly Infinite Residually Finite

(Geometric Group Theory) (Number Theory, Combinatorics)

These classes behave differently.

The Burnside Problem (1902)

G=1(a,....,am), dn: Vge G g"=1 = |G| < o0.

More generally, what makes a group finite?
No (Novikov-Adian, 1968)

For Residually Finite Groups: YES (E.Z., 1991)
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Expanders

Expanders.

[ = (V, E) finite connected graph, § = W C V,
OW={veV|v¢gW, dst(v, W)=1}

v

W (WOoW) s .

Definition. e > 0; [ is an e-expander if V() # W C V such
1
that |W| < Eyvy
W UAOW| > (1+€)|W|.
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Wanted: infinite family of k-regular graphs ', = (V,, E,) that are
all e-expanders; k, € are fixed, |V,| — oc.

Pinsker, 70s; Barzdin-Kolmogorov, 60s

G = (X) finite group
Cay(G, X) Cayley Graph
V=G

&2
g if @& =xTlgy, x € X.

Connected 2|X|-regular graph.
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Kazhdan (1967): 3 groups G = (X), |X| < oo, with the following
property:

Property (T)
Je > 0 Vunitary representation p: G — U(H) without # 0 fixed
points: Vhe H 3x e X ||xh— h|| > €||h||.

For example, G = SL(n,Z), n > 3.

G. Margulis (1981): G = (X), |X]| < oo, residually finite & has
property (T); ¢ : G = G;, |G| <00, X = X;, G = (X)).
Then {Cay(G;, X;)}; is an expander family.

Kassabov, Lubotzky, Breuillard, Green, Tao: any infinite family of
finite simple groups ~~ expander family.
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Growth of Groups

Growth of Groups.

G agroup, G = (x1,...,Xm)

B(n) = {xi'---x', k < n}

n i

B(n) = ball of radius n with the center at 1 in Cay(G, X).
g(X, n) = |B(n)] < o0

g(l)<g(2)<... growth function

Unfortunately, g(X, n) depends on X.
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Growth of Groups

N={1,2,...}
f,g :N—=[1,00)

Definition. f < g asymptotically less than or equal to g if 3¢ > 1:
f(n) < c g(cn) forall n.

If f <g, g <f then f ~ g asymptotically equivalent.

If G = (X) = (Y), |X| < 00, |Y| < 00 then

g(X7n) Ng(Y’ n)'

Growth of G = class of equivalence.
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Growth of Groups

J. Milnor (1968):

(1) is it true that the growth of a group is polynomially bounded
iff G> H, |G : H| < oo, His nilpotent?

(2) Do there exist groups of intermediate growth?

Both problems were solved at about the same time in 1980-1982.
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Growth of Groups

Gromov: groups of polynomial growth.

G ~» Cay(G)  metric space
G acts on Cay(G) by isometries g : x — xg, x € G

a9 1
C_/ Cay(G) ~ R".

G actson R", G — GL(n, R) linear group.
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Growth of Groups

Grigorchuk: groups of intermediate growth.

T = G < Aut(T)

Now Branch Groups or Fractal Groups

~~ Dynamical Systems, Number Theory, etc. etc.
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Growth of Algebras

Algebras: F a field, A = F-algebra generated by a finite dimen-
sional subspace V.

ZV -V, k <n,
—

Vicvic..., Jvi=A
g(V,n)=dimg(V").

If g(V,n) < n (polynomially bounded) then the minimal such
d = Gelfand-Kirillov dimension of A.
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Approximate Groups

Approximate Groups.

G a group, A C G a subset (symmetric: A= A1), k> 1.

The properties:

x| =

(1) for x,y € A xy~! € A with probability >
(2) A% < KIA];

k
(3) A?is covered by k right translates of A, A? C |J Ag;,

i=1

~~ to the same theories.

Ais a k-approximate group.
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Approximate Groups

Examples.
(i) A={n| =N < n < N} is a 2-approximate group in Z.

(ii) d-dimensional arithmetic progression
A:{n1X1+...—|—ndXd | ’I’l,“ S N,}CZ

is a 29-approximate subgroup

e No fast expansion ~~ approximate subgroups

e Polynomial growth (Gromov's Theorem)
~~ balls of radius n are nice approximate subgroups.
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Approximate Groups

Freiman-Ruzsa: A C 7Z a k-approximate subgroup

P
:>A§P:{n1x1—|——i—ndxd||n,|§N,}, dgk, %Sf(k)

Helfgott, Gamburd-Bourgain-Sarnak, Hrushovski, Breuillard-Green-
Tao, Pyber-Szabo, ... = a noncommutative version for linear
groups.

Side Effects: better understanding (efficient version) of Gromov's
theorem, a new approach to Hilbert's bth Problem.
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Profinite and Pro-p Groups

Profinite and Pro-p Groups.

G residually finite
(M{H< G ||G:H|l <oo}=(1).
Basis of neighborhoods of 1

The topology is complete = profinite group = inverse limit of finite
groups.

G = completion of G, G — G
In any case

G— G/[{H<G||G:H| <o} — G
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Profinite and Pro-p Groups

Example. K /F infinite Galois extension of fields, Gal(K/F) is
profinite.

p a prime number, ¢; : G — G;, G; are finite p-groups,
(ker p; = (1). Then G is residually-p.

Complete topology = pro-p group = inverse limit of finite p-
groups.

Gp pro-p completion, G — Gg.

In any case

G—G/[J{H<G||G:H|=p" k>0} — G

17 /19



Profinite and Pro-p Groups

Ex.1

F. the free group on xi, ..., Xm,; Vp residually-p,
(Fm)p free pro-p group.

Ex.2 Z, p-adic integers, GL'(n,Z,) = 1,+ pM,(Z,) pro-p group.
M. Lazard (1965): Vp-adic Lie group has an open subgroup that
is — GL(n, Z,).

Ex.2' GL'(n, R), R more general commutative rings.
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Profinite and Pro-p Groups

Polynomial identity: 1 # w(xy,...,Xm) € (Fn)

b

Vgi,....,8m € G w(g,...,&n) =1

(p-adic Lie groups) C (Pl-groups)

Possible application

Fontaine-Mazur Conjecture:

Vp : Gal(K/Q) — GL'(n, R) the image of p is finite.
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